Robustness Certificates for Implicit Neural Networks: A Mixed Monotone Contractive Approach

被引:0
|
作者
Jafarpour, Saber [1 ]
Abate, Matthew [1 ]
Davydov, Alexander [2 ]
Bullo, Francesco [2 ]
Coogan, Samuel [1 ]
机构
[1] Georgia Institute of Technology, United States
[2] University of California, Santa Barbara, United States
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Computation theory - Embedded systems - Learning systems - Multilayer neural networks - System theory
引用
收藏
页码:917 / 930
相关论文
共 50 条
  • [21] Weak contractive inequalities and compatible mixed monotone random operators in ordered metric spaces
    N Hussain
    A Latif
    N Shafqat
    Journal of Inequalities and Applications, 2012
  • [22] Grouping Sensors for the Key Distribution of Implicit Certificates in Wireless Sensor Networks
    Chang, Ray-, I
    Chiang, Chien-Wen
    Hung, Yu-Hsin
    ELECTRONICS, 2023, 12 (13)
  • [23] Inexact Implicit Method with Variable Parameter for Mixed Monotone Variational Inequalities
    S. L. Wang
    H. Yang
    B. S. He
    Journal of Optimization Theory and Applications, 2001, 111 : 431 - 443
  • [24] Inexact implicit method with variable parameter for mixed monotone variational inequalities
    Wang, SL
    Yang, H
    He, BS
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 111 (02) : 431 - 443
  • [25] CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks
    Pautov, Mikhail
    Tursynbek, Nurislam
    Munkhoeva, Marina
    Muravev, Nikita
    Petiushko, Aleksandr
    Oseledets, Ivan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7975 - 7983
  • [26] Hunting Malicious TLS Certificates with Deep Neural Networks
    Torroledo, Ivan
    Camacho, Luis David
    Bahnsen, Alejandro Correa
    AISEC'18: PROCEEDINGS OF THE 11TH ACM WORKSHOP ON ARTIFICIAL INTELLIGENCE AND SECURITY, 2018, : 64 - 73
  • [27] A robustness assessment approach for hardware noise-based convolutional neural networks
    Xie, Xiaoyan
    Sun, Bo
    Li, Jingying
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1088 - 1093
  • [28] Survey on Robustness Verification of Feedforward Neural Networks and Recurrent Neural Networks
    Liu Y.
    Yang P.-F.
    Zhang L.-J.
    Wu Z.-L.
    Feng Y.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (07): : 1 - 33
  • [29] ε-Weakened Robustness of Deep Neural Networks
    Huang, Pei
    Yang, Yuting
    Liu, Minghao
    Jia, Fuqi
    Ma, Feifei
    Zhang, Jian
    PROCEEDINGS OF THE 31ST ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, ISSTA 2022, 2022, : 126 - 138
  • [30] Robustness analysis for compact neural networks
    Chen G.
    Peng P.
    Tian Y.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52 (05): : 689 - 703