Predicting peritumoral glioblastoma infiltration and subsequent recurrence using deep-learning-based analysis of multi-parametric magnetic resonance imaging

被引:1
|
作者
Kwak, Sunwoo [1 ,2 ]
Akbari, Hamed [3 ]
Garcia, Jose A. [1 ,2 ]
Mohan, Suyash [1 ,2 ]
Dicker, Yehuda [4 ]
Sako, Chiharu [1 ,2 ]
Matsumoto, Yuji [1 ]
Nasrallah, MacLean P. [1 ,5 ]
Shalaby, Mahmoud [6 ]
O'Rourke, Donald M. [7 ]
Shinohara, Russel T. [2 ,8 ]
Liu, Fang [8 ]
Badve, Chaitra [9 ]
Barnholtz-Sloan, Jill S. [10 ]
Sloan, Andrew E. [11 ]
Lee, Matthew [12 ]
Jain, Rajan [12 ,13 ]
Cepeda, Santiago [14 ]
Chakravarti, Arnab [15 ]
Palmer, Joshua D. [15 ]
Dicker, Adam P. [16 ]
Shukla, Gaurav [16 ]
Flanders, Adam E. [16 ]
Shi, Wenyin [16 ]
Woodworth, Graeme F. [17 ]
Davatzikos, Christos [1 ,2 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Biomed Image Comp & Analyt, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Santa Clara Univ, Sch Engn, Dept Bioengn, Santa Clara, CA USA
[4] Columbia Univ, Sch Engn, Dept Comp Sci, New York, NY USA
[5] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA USA
[6] Mercy Catholic Med Ctr, Dept Radiol, Philadelphia, PA USA
[7] Univ Penn, Perelman Sch Med, Dept Neurosurg, Philadelphia, PA USA
[8] Univ Penn, Perelman Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA USA
[9] Case Western Reserve Univ, Univ Hosp Cleveland Med Ctr, Dept Radiol, Cleveland, OH USA
[10] NCI, Ctr Biomed Informat & Informat Technol, Div Canc Epidemiol & Genet, Bethesda, MD USA
[11] Piedmont Healthcare, Div Neurosci, Atlanta, GA USA
[12] NYU, Dept Radiol, Grossman Sch Med, New York, NY USA
[13] NYU, Dept Neurosurg, Grossman Sch Med, New York, NY USA
[14] Univ Hosp Rio Hortega, Valladolid, Spain
[15] Ohio State Univ, Dept Radiat Oncol, Wexner Med Ctr, Columbus, OH USA
[16] Thomas Jefferson Univ, Haverford, PA USA
[17] Univ Maryland, Adelphi, MD USA
基金
美国国家卫生研究院;
关键词
glioblastoma; deep learning; infiltration; recurrence; multi-parametric MRI; PATTERN-ANALYSIS; GLIOMA; BRAIN; RADIOTHERAPY; RESECTION; SURVIVAL; EXTENT; TEMOZOLOMIDE;
D O I
10.1117/1.JMI.11.5.054001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor. The standard treatment approach is surgical resection to target the enhancing tumor mass, followed by adjuvant chemoradiotherapy. However, malignant cells often extend beyond the enhancing tumor boundaries and infiltrate the peritumoral edema. Traditional supervised machine learning techniques hold potential in predicting tumor infiltration extent but are hindered by the extensive resources needed to generate expertly delineated regions of interest (ROIs) for training models on tissue most and least likely to be infiltrated. Approach: We developed a method combining expert knowledge and training-based data augmentation to automatically generate numerous training examples, enhancing the accuracy of our model for predicting tumor infiltration through predictive maps. Such maps can be used for targeted supra-total surgical resection and other therapies that might benefit from intensive yet well-targeted treatment of infiltrated tissue. We apply our method to preoperative multi-parametric magnetic resonance imaging (mpMRI) scans from a subset of 229 patients of a multi-institutional consortium (Radiomics Signatures for Precision Diagnostics) and test the model on subsequent scans with pathology-proven recurrence. Results: Leave-one-site-out cross-validation was used to train and evaluate the tumor infiltration prediction model using initial pre-surgical scans, comparing the generated prediction maps with follow-up mpMRI scans confirming recurrence through post-resection tissue analysis. Performance was measured by voxel-wised odds ratios (ORs) across six institutions: University of Pennsylvania (OR: 9.97), Ohio State University (OR: 14.03), Case Western Reserve University (OR: 8.13), New York University (OR: 16.43), Thomas Jefferson University (OR: 8.22), and Rio Hortega (OR: 19.48). Conclusions: The proposed model demonstrates that mpMRI analysis using deep learning can predict infiltration in the peri-tumoral brain region for GBM patients without needing to train a model using expert ROI drawings. Results for each institution demonstrate the model's generalizability and reproducibility.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Identifying Multiple Invasive Intratumor Habitats in Glioblastoma Using Multi-Parametric Magnetic Resonance Imaging and Copula Transform
    Li, C.
    Wang, S.
    Sun, C.
    Schonlieb, C. B.
    Price, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : S80 - S81
  • [12] Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma
    Nakagawa, Masataka
    Nakaura, Takeshi
    Namimoto, Tomohiro
    Kitajima, Mika
    Uetani, Hiroyuki
    Tateishi, Machiko
    Oda, Seitaro
    Utsunomiya, Daisuke
    Makino, Keishi
    Nakamura, Hideo
    Mukasa, Akitake
    Hirai, Toshinori
    Yamashita, Yasuyuki
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 108 : 147 - 154
  • [13] Deep learning-based multi-parametric magnetic resonance imaging (mp-MRI) nomogram for predicting Ki-67 expression in rectal cancer
    Wu, Sikai
    Wang, Neng
    Ao, Weiqun
    Hu, Jinwen
    Xu, Wenjie
    Mao, Guoqun
    ABDOMINAL RADIOLOGY, 2024, 49 (09) : 3003 - 3014
  • [14] Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model
    Xia, Wei
    Hu, Bin
    Li, Haiqing
    Shi, Wei
    Tang, Ying
    Yu, Yang
    Geng, Chen
    Wu, Qiuwen
    Yang, Liqin
    Yu, Zekuan
    Geng, Daoying
    Li, Yuxin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (03) : 880 - 887
  • [15] Deep learning tumor segmentation for target delineation in glioblastoma using multi-parametric MRI
    Hannisdal, M.
    Goplen, D.
    Alam, S.
    Haasz, J.
    Oltedal, L.
    Rahman, M. A.
    Rygh, C. B.
    Lie, S. A.
    Lundervold, A.
    Chekenya, M.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S251 - S252
  • [16] MULTI-PARAMETRIC MRI-BASED MACHINE LEARNING ANALYSIS FOR PREDICTION OF NEOPLASTIC INFILTRATION AND RECURRENCE IN PATIENTS WITH GLIOBLASTOMA: UPDATES FROM THE MULTI-INSTITUTIONAL RESPOND CONSORTIUM
    Akbari, Hamed
    Mohan, Suyash
    Garcia, Jose
    Kazerooni, Anahita Fathi
    Sako, Chiharu
    Bakas, Spyridon
    Bilello, Michel
    Bagley, Stephen
    Baid, Ujjwal
    Brem, Steven
    Lustig, Robert
    Nasrallah, MacLean
    O'Rourke, Donald
    Barnholtz-Sloan, Jill
    Badve, Chaitra
    Sloan, Andrew
    Jain, Rajan
    Lee, Matthew
    Chakravarti, Arnab
    Palmer, Joshua
    Taylor, William
    Cepeda, Santiago
    Dicker, Adam
    Flanders, Adam
    Shi, Wenyin
    Shukla, Gaurav
    Calabrese, Evan
    Rudie, Jeffrey
    Villanueva-Meyer, Javier
    LaMontagne, Pamela
    Marcus, Daniel
    Balana, Carmen
    Capellades, Jaume
    Puig, Josep
    Murat, A. K.
    Colen, Rivka
    Ahn, Sung Soo
    Chang, Jong Hee
    Choi, Yoon Seong
    Lee, Seung-Koo
    Griffith, Brent
    Poisson, Laila
    Rogers, Lisa
    Booth, Thomas
    Mahajan, Abhishek
    Wiestler, Benedikt
    Davatzikos, Christos
    NEURO-ONCOLOGY, 2022, 24 : 179 - 180
  • [17] Multi-Parametric Representation of Voxel-Based Quantitative Magnetic Resonance Imaging
    Engstrom, Maria
    Warntjes, Jan B. M.
    Tisell, Anders
    Landtblom, Anne-Marie
    Lundberg, Peter
    PLOS ONE, 2014, 9 (11):
  • [18] Combining and analyzing novel multi-parametric magnetic resonance imaging metrics for predicting Gleason score
    Mayer, Rulon
    Turkbey, Baris
    Choyke, Peter
    Simone, Charles B., II
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (07) : 3844 - 3859
  • [19] In Vivo Detection of EGFRvIII in Glioblastoma via Perfusion Magnetic Resonance Imaging Signature Consistent with Deep Peritumoral Infiltration: The φ-Index
    Bakas, Spyridon
    Akbari, Hamed
    Pisapia, Jared
    Martinez-Lage, Maria
    Rozycki, Martin
    Rathore, Saima
    Dahmane, Nadia
    O'Rourke, Donald M.
    Davatzikos, Christos
    CLINICAL CANCER RESEARCH, 2017, 23 (16) : 4724 - 4734
  • [20] Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T
    Citak-Er, Fusun
    Firat, Zeynep
    Kovanlikaya, Ilhami
    Ture, Ugur
    Ozturk-Isik, Esin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 99 : 154 - 160