Combined startup strategy of high temperature proton exchange membrane fuel cells

被引:0
|
作者
Huang, Yan [1 ]
Chu, Xiaotian [1 ]
Zhou, Hao [1 ]
Zhao, Huijing [2 ]
Xie, Yongliang [1 ]
Sun, Zuo-Yu [3 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 611756, Peoples R China
[2] Southwest Jiaotong Univ, Sch Earth & Environm Sci, Chengdu 611756, Peoples R China
[3] Beijing Jiaotong Univ, Sch Mech Elect & Control Engn, Hydrogen Energy & Space Prop Lab HESPL, Beijing 100044, Peoples R China
关键词
High temperature proton exchange membrane; fuel cell; Thermal management; Combination strategy; Startup time; OPTIMIZATION; PEMFC; MODEL;
D O I
10.1016/j.ijhydene.2024.11.361
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) are one of the key focuses in hydrogen energy research. Achieving rapid operational temperature is a critical challenge. This study combines experimental and numerical methods to investigate combined start-up strategies for HT-PEMFCs. Initially, a single-cell HT-PEMFC was constructed to obtain polarization curves. Subsequently, a three-dimensional multi-physics numerical model was developed to determine start-up times and maximum temperature differences, proposing four start-up strategies: increasing inlet gas temperature, enhancing heating plate power, combined heating without and with incorporating heat recovery. Results indicate that increasing inlet gas temperature and using a heating plate each have limitations in start-up time and membrane temperature uniformity. The optimal strategy, combining 150 degrees C inlet gas and a 1200 W/m2 heating plate for startup, minimizes energy consumption. Additionally, incorporating heat recovery, both energy consumption and startup time can be reduced compared to scenarios without heat recovery, regardless of whether the priority is given to energy consumption or startup time.
引用
收藏
页码:771 / 782
页数:12
相关论文
共 50 条
  • [41] Primary energy savings of a modular combined heat and power plant based on high temperature proton exchange membrane fuel cells
    Pohl, Elmar
    Meier, Pascal
    Maximini, Marius
    vom Schloss, Joerg
    APPLIED THERMAL ENGINEERING, 2016, 104 : 54 - 63
  • [42] New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell
    Thomas, Sobi
    Jeppesen, Christian
    Steenberg, Thomas
    Araya, Samuel Simon
    Vang, Jakob Rabjerg
    Kaer, Soren Knudsen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (44) : 27230 - 27240
  • [43] Influences of reformate on the performance of high temperature proton exchange membrane fuel cell and its optimization strategy
    Sun, Mu
    Huang, Jicai
    Xia, Zhangxun
    Yang, Congrong
    Jing, Fenning
    Wang, Suli
    Sun, Gongquan
    Chemical Engineering Journal, 2024, 498
  • [44] Influences of reformate on the performance of high temperature proton exchange membrane fuel cell and its optimization strategy
    Sun, Mu
    Huang, Jicai
    Xia, Zhangxun
    Yang, Congrong
    Jing, Fenning
    Wang, Suli
    Sun, Gongquan
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [45] Optimization of Water and Thermal Management in Proton Exchange Membrane Fuel Cell during Low Temperature Startup
    Luo Y.
    Zhang S.
    Gao L.
    Yu J.
    Luo, Yueqi (luoyueqi@saicmotor.com), 2018, China Machine Press (33): : 2626 - 2635
  • [46] Improvement of Temperature and Humidity Control of Proton Exchange Membrane Fuel Cells
    Xiong, Shusheng
    Wu, Zhankuan
    Li, Wei
    Li, Daize
    Zhang, Teng
    Lan, Yu
    Zhang, Xiaoxuan
    Ye, Shuyan
    Peng, Shuhao
    Han, Zeyu
    Zhu, Jiarui
    Song, Qiujie
    Jiao, Zhixiao
    Wu, Xiaofeng
    Huang, Heqing
    SUSTAINABILITY, 2021, 13 (19)
  • [47] Silica-facilitated proton transfer for high-temperature proton-exchange membrane fuel cells
    Huang, Gen
    Li, Yingying
    Du, Shiqian
    Wu, Yujie
    Chen, Ru
    Zhang, Jin
    Cheng, Yi
    Lu, Shanfu
    Tao, Li
    Wang, Shuangyin
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (12) : 2203 - 2211
  • [48] Silica-facilitated proton transfer for high-temperature proton-exchange membrane fuel cells
    Gen Huang
    Yingying Li
    Shiqian Du
    Yujie Wu
    Ru Chen
    Jin Zhang
    Yi Cheng
    Shanfu Lu
    Li Tao
    Shuangyin Wang
    Science China Chemistry, 2021, 64 : 2203 - 2211
  • [49] Anhydrous Proton Conducting Hybrid Membrane Electrolytes for High Temperature (>100°C) Proton Exchange Membrane Fuel Cells
    Lakshminarayana, G.
    Vijayaraghavan, R.
    Nogami, Masayuki
    Kityk, I. V.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (04) : B376 - B383
  • [50] Imidazolium Trifluoromethanesulfonate sPEEK Composites for Anhydrous High Temperature Proton Exchange Membrane Fuel Cells
    De Almeida, N. E.
    Goward, G. R.
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 425 - 432