Understanding Online Purchases with Explainable Machine Learning

被引:0
|
作者
Bastos, Joao A. [1 ,2 ]
Bernardes, Maria Ines [1 ,2 ]
机构
[1] Univ Lisbon, Lisbon Sch Econ & Management ISEG, P-1649004 Lisbon, Portugal
[2] Univ Lisbon, REM, P-1649004 Lisbon, Portugal
关键词
customer profiling; conversion; direct marketing; explainable artificial intelligence; SHAP value; accumulated local effects; BEHAVIOR;
D O I
10.3390/info15100587
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Customer profiling in e-commerce is a powerful tool that enables organizations to create personalized offers through direct marketing. One crucial objective of customer profiling is to predict whether a website visitor will make a purchase, thereby generating revenue. Machine learning models are the most accurate means to achieve this objective. However, the opaque nature of these models may deter companies from adopting them. Instead, they may prefer simpler models that allow for a clear understanding of the customer attributes that contribute to a purchase. In this study, we show that companies need not compromise on prediction accuracy to understand their online customers. By leveraging website data from a multinational communications service provider, we establish that the most pertinent customer attributes can be readily extracted from a black box model. Specifically, we show that the features that measure customer activity within the e-commerce platform are the most reliable predictors of conversions. Moreover, we uncover significant nonlinear relationships between customer features and the likelihood of conversion.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Principles and Practice of Explainable Machine Learning
    Belle, Vaishak
    Papantonis, Ioannis
    FRONTIERS IN BIG DATA, 2021, 4
  • [22] Explainable Machine Learning for Trustworthy AI
    Giannotti, Fosca
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 3 - 3
  • [23] Explainable Machine Learning for Fraud Detection
    Psychoula, Ismini
    Gutmann, Andreas
    Mainali, Pradip
    Lee, S. H.
    Dunphy, Paul
    Petitcolas, Fabien A. P.
    COMPUTER, 2021, 54 (10) : 49 - 59
  • [24] Explainable machine learning models with privacy
    Bozorgpanah, Aso
    Torra, Vicenc
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2024, 13 (01) : 31 - 50
  • [25] eXplainable Cooperative Machine Learning with NOVA
    Tobias Baur
    Alexander Heimerl
    Florian Lingenfelser
    Johannes Wagner
    Michel F. Valstar
    Björn Schuller
    Elisabeth André
    KI - Künstliche Intelligenz, 2020, 34 : 143 - 164
  • [26] Explainable machine learning models with privacy
    Aso Bozorgpanah
    Vicenç Torra
    Progress in Artificial Intelligence, 2024, 13 : 31 - 50
  • [27] Hardware Acceleration of Explainable Machine Learning
    Pan, Zhixin
    Mishra, Prabhat
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1127 - 1130
  • [28] eXplainable Cooperative Machine Learning with NOVA
    Baur, Tobias
    Heimerl, Alexander
    Lingenfelser, Florian
    Wagner, Johannes
    Valstar, Michel F.
    Schuller, Björn
    André, Elisabeth
    KI - Kunstliche Intelligenz, 2020, 34 (02): : 143 - 164
  • [29] Explainable Machine Learning for Intrusion Detection
    Bellegdi, Sameh
    Selamat, Ali
    Olatunji, Sunday O.
    Fujita, Hamido
    Krejcar, Ondfrej
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024, 2024, 14748 : 122 - 134
  • [30] Explainable Artificial Intelligence and Machine Learning
    Raunak, M. S.
    Kuhn, Rick
    COMPUTER, 2021, 54 (10) : 25 - 27