Deeply Hybrid Contrastive Learning Based on Semantic Pseudo-Label for Salient Object Detection in Optical Remote Sensing Images

被引:0
|
作者
Qiu, Yu [1 ,2 ]
Sun, Yuhang [1 ]
Mei, Jie [3 ]
Xu, Jing [1 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
[2] Hunan Normal Univ, Coll Informat Sci & Engineer ing, Changsha 410081, Peoples R China
[3] Hunan Univ, Natl Engn Res Ctr Robot Visual Percept & Control T, Sch Robot, Changsha 410082, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Feature extraction; Semantics; Visualization; Training; Task analysis; Remote sensing; Image edge detection; Salient object detection; remote sensing images; pseudo-label; hybrid contrast; hard edge contrast; NETWORK; FUSION;
D O I
10.1109/TMM.2024.3414669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Salient object detection in natural scene images (NSI-SOD) has undergone remarkable advancements in recent years. However, compared to those of natural images, the properties of remote sensing images (ORSIs), such as diverse spatial resolutions, complex background structures, and varying visual attributes of objects, are more complicated. Hence, how to explore the multiscale structural perceptual information of ORSIs to accurately detect salient objects is more challenging. In this paper, inspired by the superiority of contrastive learning, we propose a novel training paradigm for ORSI-SOD, named Deeply Hybrid Contrastive Learning Based on Semantic Pseudo-Label (DHCont), to force the network to extract rich structural perceptual information and further learn the better-structured feature embedding spaces. Specifically, DHCont first splits the ORSI into several local subregions composed of color- and texture-similar pixels, which act as semantic pseudo-labels. This strategy can effectively explore the underdeveloped semantic categories in ORSI-SOD. To delve deeper into multiscale structure-aware optimization, DHCont incorporates a hybrid contrast strategy that integrates "pixel-to-pixel", "region-to-region", "pixel-to-region", and "region-to-pixel" contrasts at multiple scales. Additionally, to enhance the edge details of salient regions, we develop a hard edge contrast strategy that focuses on improving the detection accuracy of hard pixels near the object boundary. Moreover, we introduce a deep contrast algorithm that adds additional deep-level constraints to the feature spaces of multiple stages. Extensive experiments on two popular ORSI-SOD datasets demonstrate that simply integrating our DHCont into the existing ORSI-SOD models can significantly improve the performance.
引用
收藏
页码:10892 / 10907
页数:16
相关论文
共 50 条
  • [31] United Domain Cognition Network for Salient Object Detection in Optical Remote Sensing Images
    Sun, Yanguang
    Yang, Jian
    Luo, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [32] Progressive Enhancement of Foreground Features for Salient Object Detection in Optical Remote Sensing Images
    Meng, Lingbing
    Li, Haiqun
    Han, Huihui
    Xu, Meng
    Wu, Jinhua
    Hou, Shuonan
    Duan, Weiwei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 7572 - 7591
  • [33] Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Gongyang
    Liu, Zhi
    Zeng, Dan
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 526 - 538
  • [34] Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation
    Li, Gongyang
    Liu, Zhi
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] Adaptive Spatial Tokenization Transformer for Salient Object Detection in Optical Remote Sensing Images
    Gao, Lina
    Liu, Bing
    Fu, Ping
    Xu, Mingzhu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [36] Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Gongyang
    Liu, Zhi
    Zeng, Dan
    Lin, Weisi
    Ling, Haibin
    IEEE Transactions on Cybernetics, 2023, 53 (01): : 526 - 538
  • [37] Heterogeneous Feature Collaboration Network for Salient Object Detection in Optical Remote Sensing Images
    Liu, Yutong
    Xu, Mingzhu
    Xiao, Tianxiang
    Tang, Haoyu
    Hu, Yupeng
    Nie, Liqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [38] Bidirectional mutual guidance transformer for salient object detection in optical remote sensing images
    Huang, Kan
    Tian, Chunwei
    Li, Ge
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (13) : 4016 - 4033
  • [39] Boundary-Aware Salient Object Detection in Optical Remote-Sensing Images
    Yu, Longxuan
    Zhou, Xiaofei
    Wang, Lingbo
    Zhang, Jiyong
    ELECTRONICS, 2022, 11 (24)
  • [40] Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images
    Zhang, Qijian
    Cong, Runmin
    Li, Chongyi
    Cheng, Ming-Ming
    Fang, Yuming
    Cao, Xiaochun
    Zhao, Yao
    Kwong, Sam
    IEEE Transactions on Image Processing, 2021, 30 : 1305 - 1317