Deeply Hybrid Contrastive Learning Based on Semantic Pseudo-Label for Salient Object Detection in Optical Remote Sensing Images

被引:0
|
作者
Qiu, Yu [1 ,2 ]
Sun, Yuhang [1 ]
Mei, Jie [3 ]
Xu, Jing [1 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
[2] Hunan Normal Univ, Coll Informat Sci & Engineer ing, Changsha 410081, Peoples R China
[3] Hunan Univ, Natl Engn Res Ctr Robot Visual Percept & Control T, Sch Robot, Changsha 410082, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Feature extraction; Semantics; Visualization; Training; Task analysis; Remote sensing; Image edge detection; Salient object detection; remote sensing images; pseudo-label; hybrid contrast; hard edge contrast; NETWORK; FUSION;
D O I
10.1109/TMM.2024.3414669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Salient object detection in natural scene images (NSI-SOD) has undergone remarkable advancements in recent years. However, compared to those of natural images, the properties of remote sensing images (ORSIs), such as diverse spatial resolutions, complex background structures, and varying visual attributes of objects, are more complicated. Hence, how to explore the multiscale structural perceptual information of ORSIs to accurately detect salient objects is more challenging. In this paper, inspired by the superiority of contrastive learning, we propose a novel training paradigm for ORSI-SOD, named Deeply Hybrid Contrastive Learning Based on Semantic Pseudo-Label (DHCont), to force the network to extract rich structural perceptual information and further learn the better-structured feature embedding spaces. Specifically, DHCont first splits the ORSI into several local subregions composed of color- and texture-similar pixels, which act as semantic pseudo-labels. This strategy can effectively explore the underdeveloped semantic categories in ORSI-SOD. To delve deeper into multiscale structure-aware optimization, DHCont incorporates a hybrid contrast strategy that integrates "pixel-to-pixel", "region-to-region", "pixel-to-region", and "region-to-pixel" contrasts at multiple scales. Additionally, to enhance the edge details of salient regions, we develop a hard edge contrast strategy that focuses on improving the detection accuracy of hard pixels near the object boundary. Moreover, we introduce a deep contrast algorithm that adds additional deep-level constraints to the feature spaces of multiple stages. Extensive experiments on two popular ORSI-SOD datasets demonstrate that simply integrating our DHCont into the existing ORSI-SOD models can significantly improve the performance.
引用
收藏
页码:10892 / 10907
页数:16
相关论文
共 50 条
  • [1] Dynamic Pseudo-Label Generation for Weakly Supervised Object Detection in Remote Sensing Images
    Wang, Hui
    Li, Hao
    Qian, Wanli
    Diao, Wenhui
    Zhao, Liangjin
    Zhang, Jinghua
    Zhang, Daobing
    REMOTE SENSING, 2021, 13 (08)
  • [2] DENSE CONTRASTIVE LEARNING BASED OBJECT DETECTION FOR REMOTE SENSING IMAGES
    Liu, Shuo
    Zou, Huanxin
    Li, Meilin
    Cao, Xu
    He, Shitian
    Wei, Juan
    Sun, Li
    Zhang, Yuqing
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6458 - 6461
  • [3] Semantic-Edge Interactive Network for Salient Object Detection in Optical Remote Sensing Images
    Luo, Huilan
    Liang, Bocheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6980 - 6994
  • [4] Change Detection for Remote Sensing Images based on Semantic Prototypes and Contrastive Learning
    Zhao, Guiqin
    Wang, Weiqiang
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 865 - 869
  • [5] Salient Object Detection Based on Progressively Supervised Learning for Remote Sensing Images
    Zhang, Libao
    Ma, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (11): : 9682 - 9696
  • [6] Salient Object Detection in Optical Remote Sensing Images Driven by Transformer
    Li, Gongyang
    Bai, Zhen
    Liu, Zhi
    Zhang, Xinpeng
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5257 - 5269
  • [7] Semantic-Guided Attention Refinement Network for Salient Object Detection in Optical Remote Sensing Images
    Huang, Zhou
    Chen, Huaixin
    Liu, Biyuan
    Wang, Zhixi
    REMOTE SENSING, 2021, 13 (11)
  • [8] ASNet: Adaptive Semantic Network Based on Transformer-CNN for Salient Object Detection in Optical Remote Sensing Images
    Yan, Ruixiang
    Yan, Longquan
    Geng, Guohua
    Cao, Yufei
    Zhou, Pengbo
    Meng, Yongle
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [9] Unsupervised Domain Adaptive Salient Object Detection through Uncertainty-Aware Pseudo-Label Learning
    Yan, Pengxiang
    Wu, Ziyi
    Liu, Mengmeng
    Zeng, Kun
    Lin, Liang
    Li, Guanbin
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 3000 - 3008
  • [10] Learning to Adapt Using Test-Time Images for Salient Object Detection in Optical Remote Sensing Images
    Huang, Kan
    Fang, Leyuan
    Tian, Chunwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62