NTK-Guided Few-Shot Class Incremental Learning

被引:1
|
作者
Liu, Jingren [1 ]
Ji, Zhong [1 ,2 ]
Pang, Yanwei [1 ,2 ]
Yu, Yunlong [3 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin Key Lab Brain Inspired Intelligence Techno, Tianjin 300072, Peoples R China
[2] Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
[3] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Power capacitors; Convergence; Training; Kernel; Optimization; Neural networks; Metalearning; Incremental learning; Jacobian matrices; Thermal stability; Few-shot class-incremental learning; neural tangent kernel; generalization; self-supervised learning;
D O I
10.1109/TIP.2024.3478854
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The proliferation of Few-Shot Class Incremental Learning (FSCIL) methodologies has highlighted the critical challenge of maintaining robust anti-amnesia capabilities in FSCIL learners. In this paper, we present a novel conceptualization of anti-amnesia in terms of mathematical generalization, leveraging the Neural Tangent Kernel (NTK) perspective. Our method focuses on two key aspects: ensuring optimal NTK convergence and minimizing NTK-related generalization loss, which serve as the theoretical foundation for cross-task generalization. To achieve global NTK convergence, we introduce a principled meta-learning mechanism that guides optimization within an expanded network architecture. Concurrently, to reduce the NTK-related generalization loss, we systematically optimize its constituent factors. Specifically, we initiate self-supervised pre-training on the base session to enhance NTK-related generalization potential. These self-supervised weights are then carefully refined through curricular alignment, followed by the application of dual NTK regularization tailored specifically for both convolutional and linear layers. Through the combined effects of these measures, our network acquires robust NTK properties, ensuring optimal convergence and stability of the NTK matrix and minimizing the NTK-related generalization loss, significantly enhancing its theoretical generalization. On popular FSCIL benchmark datasets, our NTK-FSCIL surpasses contemporary state-of-the-art approaches, elevating end-session accuracy by 2.9% to 9.3%.
引用
收藏
页码:6029 / 6044
页数:16
相关论文
共 50 条
  • [1] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    Neural Networks, 2024, 169 : 307 - 324
  • [2] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    NEURAL NETWORKS, 2024, 169 : 307 - 324
  • [3] Graph Few-shot Class-incremental Learning
    Tan, Zhen
    Ding, Kaize
    Guo, Ruocheng
    Liu, Huan
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 987 - 996
  • [4] Constrained Few-shot Class-incremental Learning
    Hersche, Michael
    Karunaratne, Geethan
    Cherubini, Giovanni
    Benini, Luca
    Sebastian, Abu
    Rahimi, Abbas
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9047 - 9057
  • [5] Semantic-visual Guided Transformer for Few-shot Class-incremental Learning
    Qiu, Wenhao
    Fu, Sichao
    Zhang, Jingyi
    Lei, Chengxiang
    Peng, Qinmu
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2885 - 2890
  • [6] ACTIVE CLASS SELECTION FOR FEW-SHOT CLASS-INCREMENTAL LEARNING
    McClurg, Christopher
    Ayub, Ali
    Tyagi, Harsh
    Rajtmajer, Sarah M.
    Wagner, Alan R.
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 811 - 827
  • [7] Forward Compatible Few-Shot Class-Incremental Learning
    Zhou, Da-Wei
    Wang, Fu-Yun
    Ye, Han-Jia
    Ma, Liang
    Pu, Shiliang
    Zhan, De-Chuan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9036 - 9046
  • [8] On the Approximation Risk of Few-Shot Class-Incremental Learning
    Wang, Xuan
    Ji, Zhong
    Liu, Xiyao
    Pang, Yanwei
    Han, Jungong
    COMPUTER VISION - ECCV 2024, PT LI, 2025, 15109 : 162 - 178
  • [9] Pseudo initialization based Few-Shot Class Incremental Learning
    Shao, Mingwen
    Zhuang, Xinkai
    Zhang, Lixu
    Zuo, Wangmeng
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 247
  • [10] Dynamic Support Network for Few-Shot Class Incremental Learning
    Yang, Boyu
    Lin, Mingbao
    Zhang, Yunxiao
    Liu, Binghao
    Liang, Xiaodan
    Ji, Rongrong
    Ye, Qixiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 2945 - 2951