Rationally reconstructing the surface microstructure of a chemical bath deposited electron transport layer for efficient and stable perovskite solar cells

被引:0
|
作者
Yang, Xinxuan [1 ,2 ,3 ,4 ,5 ]
Wang, Lexin [4 ]
Liu, Meihan [4 ]
Jin, Jiahui [4 ]
Yang, Lili [4 ,5 ]
Fan, Lin [4 ,5 ]
Wei, Maobin [4 ,5 ]
Liu, Huilian [4 ,5 ]
Chen, Haoran [1 ,2 ,3 ]
Yang, Jinghai [4 ,5 ]
Chang, Yulei [1 ,2 ,3 ]
Wang, Fengyou [4 ,5 ]
机构
[1] Chinese Acad Sci, Key Lab Luminescence Sci & Technol, Changchun 130033, Jilin, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence Sci & Applicat, Changchun 130033, Jilin, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Changchun 130103, Peoples R China
[5] Jilin Normal Univ, Natl Demonstrat Ctr Expt Phys Educ, Siping 136000, Peoples R China
来源
INORGANIC CHEMISTRY FRONTIERS | 2024年 / 11卷 / 22期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Tin dioxide;
D O I
10.1039/d4qi01808g
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In perovskite solar cells (PSCs), chemical bath deposition (CBD) is promising as the core technique for preparing a commercial electron transport layer (ETL) because the film prepared by CBD exhibits excellent uniform and conformal coverage of the substrate. However, metal oxide (MOx) films prepared through CBD often have defects on the surface like oxygen vacancies and hydroxyl that limit the PSCs efficiency and degrade the long-term stability. To address this obstacle to the scaled PSCs application, we here reconstructed the surface microstructure of a CBD tin dioxide (SnO2) ETL by post-treatment with dilute H2SO4 solution to terminate the oxygen vacancies from the MOx surface while effectively removing the hydroxyl groups. Concurrently, the potent oxidizing property of H2SO4 facilitates the transformation from Sn(ii) to Sn(iv), thereby enhancing the alignment of the energy level between SnO2 and the perovskite (PVK) layer within the ETL architecture. Moreover, the interaction between SO42- and the perovskite precursor mitigates the difference in crystallization velocity between the perovskite upper and buried surfaces, enabling the formation of films with homogeneous phase distribution and good crystallization. Ultimately, with the assistance of this facile surface microstructure reconstruction, the power conversion efficiency (PCE) improves from 22.48% to 24.29%.
引用
收藏
页码:7910 / 7920
页数:11
相关论文
共 50 条
  • [41] Gelation of the electron transport layer to improve the thermal stability of efficient perovskite solar cells
    Wang, Xin
    Feng, Jingyao
    Zhang, Zaixin
    Xing, Jiaojiao
    Li, Wenqin
    Cui, Yongjie
    Wu, Zihua
    Yu, Wei
    Chen, Lifei
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (36) : 14433 - 14444
  • [42] Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells
    Fu Y.
    Li Y.
    Xing G.
    Cao D.
    Materials Today Advances, 2022, 16
  • [43] Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells
    Fu, Yajie
    Li, Yang
    Xing, Guichuan
    Cao, Derong
    MATERIALS TODAY ADVANCES, 2022, 16
  • [44] Highly efficient, stable and hysteresis-less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer
    Sadegh, Faranak
    Akin, Seckin
    Moghadam, Majid
    Mirkhani, Valiollah
    Ruiz-Preciado, Marco A.
    Wang, Zaiwei
    Tavakoli, Mohammad Mahdi
    Graetzel, Michael
    Hagfeldt, Anders
    Tress, Wolfgang
    NANO ENERGY, 2020, 75
  • [45] Surface modification of ZnO electron transport layer with thermally evaporated WO3 for stable perovskite solar cells
    Tsarev, Sergey
    Troshin, Pavel A.
    SYNTHETIC METALS, 2020, 269
  • [46] Periodic Acid Modification of Chemical-Bath Deposited SnO2 Electron Transport Layers for Perovskite Solar Cells and Mini Modules
    Wu, Ziyi
    Su, Jiazheng
    Chai, Nianyao
    Cheng, Siyang
    Wang, Xuanyu
    Zhang, Ziling
    Liu, Xuanling
    Zhong, Han
    Yang, Jianfei
    Wang, Zhiping
    Liu, Jianbo
    Li, Xin
    Lin, Hong
    ADVANCED SCIENCE, 2023, 10 (20)
  • [47] Thermally Stable, Efficient, Vapor Deposited Inorganic Perovskite Solar Cells
    Gaonkar, Harshavardhan
    Zhu, Junhao
    Kottokkaran, Ranjith
    Bhageri, Behrang
    Noack, Max
    Dalai, Vikram
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) : 3497 - 3503
  • [48] Atomic layer deposition for efficient and stable perovskite solar cells
    Seo, Seongrok
    Jeong, Seonghwa
    Park, Hyoungmin
    Shin, Hyunjung
    Park, Nam-Gyu
    CHEMICAL COMMUNICATIONS, 2019, 55 (17) : 2403 - 2416
  • [49] Interface Modification of a Perovskite/Hole Transport Layer with Tetraphenyldibenzoperiflanthene for Highly Efficient and Stable Solar Cells
    Li, Shiqi
    Wu, Yukun
    Zhang, Chenxi
    Liu, Yifan
    Sun, Qinjun
    Cui, Yanxia
    Liu, Shengzhong Frank
    Hao, Yuying
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45073 - 45082
  • [50] An integrated organic-inorganic hole transport layer for efficient and stable perovskite solar cells
    Guo, Yaxiong
    Lei, Hongwei
    Xiong, Liangbin
    Li, Borui
    Fang, Guojia
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (05) : 2157 - 2165