Automatic lunar dome detection methods based on deep learning

被引:0
|
作者
Tian Y. [1 ]
Tian X. [1 ]
机构
[1] School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa
来源
关键词
Automatic detection; Deep learning; Digital elevation model data; Lunar domes;
D O I
10.1016/j.pss.2024.105916
中图分类号
学科分类号
摘要
Lunar domes are common structures on the lunar surface and are important for studying the geological evolution of the moon. The distribution of spatial frequencies of lunar domes provides significant evidence for the evolution of lunar volcanoes. In recent years, deep learning methods have been rapidly developing in many fields. However, most of the existing dome detection algorithms use manual or semi-automatic traditional methods. In this paper, we propose an automatic deep learning recognition method to simplify the traditional dome identification process, which is an end-to-end detection method. We built a lunar dome dataset using digital elevation model data and compared eleven advanced deep learning target detection algorithms, which include three types of detection architecture. The region of Marius Hills was selected for validation to evaluate method performance. By comparing the results with manual identification, the proposed method has an identification precision of 88.7%. In addition, we detected 12 unrecorded potential domes/cones. The morphological characterization and visualization results indicate that the detected features may be domes/cones and our method may provide novel dome detection. © 2024 Elsevier Ltd
引用
下载
收藏
相关论文
共 50 条
  • [41] Automatic Cloud Detection Based on Deep Learning from AVHRR Data
    Qiu, Meng
    Yin, Haoyu
    Chen, Qiang
    Liu, Yingjian
    ARTIFICIAL INTELLIGENCE (ICAI 2018), 2018, 888 : 127 - 138
  • [42] Research on automatic detection algorithm of pulmonary nodules based on deep learning
    Zhao, Anqi
    Deng, Jie
    Zhong, Laicheng
    Duan, Xuliang
    Zhang, Jiaxin
    Peng, Yuhao
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 893 - 897
  • [43] An Automatic Dermatology Detection System Based on Deep Learning and Computer Vision
    Sorour, Shaymaa E.
    Hany, Amr Abo
    Elredeny, Mohamed S.
    Sedik, Ahmed
    Hussien, Reda M.
    IEEE ACCESS, 2023, 11 : 137769 - 137778
  • [44] Automatic Malware Detection Using Deep Learning Based on Static Analysis
    Liu, Liu
    Wang, Baosheng
    DATA SCIENCE, PT 1, 2017, 727 : 500 - 507
  • [45] Deep Learning Based Method for Automatic Focus Detection in Digital Lithography
    Yang Jupu
    Du Jialin
    Li Fanxing
    Chen Qingrong
    Wang Simo
    Yan Wei
    ACTA PHOTONICA SINICA, 2022, 51 (06)
  • [46] Automatic Power Transmission Towers Detection Based on the Deep Learning Algorithm
    Mo, Yifu
    Xie, Ruibiao
    Pan, Qishen
    Zhang, Baoxing
    2021 2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND INTELLIGENT CONTROL (ICCEIC 2021), 2021, : 11 - 15
  • [47] Automatic crack detection of dam concrete structures based on deep learning
    Lv, Zongjie
    Tian, Jinzhang
    Zhu, Yantao
    Li, Yangtao
    COMPUTERS AND CONCRETE, 2023, 32 (06): : 615 - 623
  • [48] Deep Learning-Based Automatic Clutter/Interference Detection for HFSWR
    Zhang, Ling
    You, Wei
    Wu, Q. M. Jonathan
    Qi, Shengbo
    Ji, Yonggang
    REMOTE SENSING, 2018, 10 (10)
  • [49] Image Analysis of the Automatic Welding Defects Detection Based on Deep Learning
    Wang, Xiaopeng
    Zhang, Baoxin
    Cui, Jinhan
    Wu, Juntao
    Li, Yan
    Li, Jinhang
    Tan, Yunhua
    Chen, Xiaoming
    Wu, Wenliang
    Yu, Xinghua
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2023, 42 (03)
  • [50] Image Analysis of the Automatic Welding Defects Detection Based on Deep Learning
    Xiaopeng Wang
    Baoxin Zhang
    Jinhan Cui
    Juntao Wu
    Yan Li
    Jinhang Li
    Yunhua Tan
    Xiaoming Chen
    Wenliang Wu
    Xinghua Yu
    Journal of Nondestructive Evaluation, 2023, 42