Quantum Griffiths Singularity in a Three-Dimensional Superconductor to Anderson Critical Insulator Transition

被引:0
|
作者
Qi, Shichao [1 ]
Liu, Yi [2 ,3 ,4 ]
Wang, Ziqiao [1 ]
Chen, Fucong [5 ]
Li, Qian [5 ]
Ji, Haoran [1 ]
Li, Rao [2 ,3 ]
Li, Yanan [1 ]
Fang, Jingchao [1 ]
Liu, Haiwen [6 ,7 ]
Wang, Fa [1 ]
Jin, Kui [5 ,8 ,9 ]
Xie, X. C. [1 ,7 ,10 ]
Wang, Jian [1 ,10 ,11 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[2] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[3] Renmin Univ China, Beijing Key Lab Optoelect Funct Mat & Micronano De, Beijing 100872, Peoples R China
[4] Renmin Univ China, Key Lab Quantum State Construction & Manipulat, Minist Educ, Beijing 100872, Peoples R China
[5] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[6] Beijing Normal Univ, Ctr Adv Quantum Studies, Dept Phys, Beijing 100875, Peoples R China
[7] Fudan Univ, Interdisciplinary Ctr Theoret Phys & Informat Sci, Shanghai 200433, Peoples R China
[8] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[9] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[10] Hefei Natl Lab, Hefei 230088, Peoples R China
[11] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
关键词
UPPER CRITICAL-FIELD; PHASE-TRANSITION; 2-DIMENSIONAL SUPERCONDUCTIVITY; ISING SUPERCONDUCTIVITY; TEMPERATURE-DEPENDENCE; CRITICAL-BEHAVIOR; METAL TRANSITION; LOCALIZATION; TRANSPORT; SUPERFLUID;
D O I
10.1103/PhysRevLett.133.226001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Disorder is ubiquitous in real materials and can have dramatic effects on quantum phase transitions. Originating from the disorder enhanced quantum fluctuation, quantum Griffiths singularity (QGS) has been revealed as a universal phenomenon in quantum criticality of low-dimensional superconductors. However, due to the weak fluctuation effect, QGS is very challenging to detect experimentally in three-dimensional (3D) superconducting systems. Here we report the discovery of QGS associated with the quantum phase transition from 3D superconductor to Anderson critical insulator in a spinel oxide MgTi2O4 (MTO). Under both perpendicular and parallel magnetic field, the dynamical critical exponent diverges when approaching the quantum critical point, demonstrating the existence of 3D QGS. Among 3D superconductors, MTO shows a relatively strong fluctuation effect featured as a wide superconducting transition region. The enhanced fluctuation, which may arise from the mobility edge of Anderson localization, finally leads to the occurrence of 3D quantum phase transition and QGS. Our findings offer a new perspective to understand quantum phase transitions in strongly disordered 3D systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Metal-insulator transition in the three-dimensional Hubbard model
    Tomita, N
    Yamazaki, M
    Nasu, K
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2004, 137 : 613 - 617
  • [32] Quantum capacitance of a three-dimensional topological insulator based on HgTe
    Kozlov, D. A.
    Bauer, D.
    Ziegler, J.
    Fischer, R.
    Savchenko, M. L.
    Kvon, Z. D.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    Weiss, D.
    LOW TEMPERATURE PHYSICS, 2017, 43 (04) : 430 - 436
  • [33] Quantum-critical region of the disorder-driven superconductor-insulator transition
    Baturina, T. I.
    Bilusic, A.
    Mironov, A. Yu.
    Vinokur, V. M.
    Baklanov, M. R.
    Strunk, C.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2008, 468 (04): : 316 - 321
  • [34] Critical behavior at the metal-insulator transition in three-dimensional disordered systems in a strong magnetic field
    Hofstetter, E
    PHYSICAL REVIEW B, 1996, 54 (07): : 4552 - 4557
  • [35] Critical State of the Anderson Transition: Between a Metal and an Insulator
    Lemarie, Gabriel
    Lignier, Hans
    Delande, Dominique
    Szriftgiser, Pascal
    Garreau, Jean Claude
    PHYSICAL REVIEW LETTERS, 2010, 105 (09)
  • [36] Three-Dimensional Localized-Delocalized Anderson Transition in the Time Domain
    Delande, Dominique
    Morales-Molina, Luis
    Sacha, Krzysztof
    PHYSICAL REVIEW LETTERS, 2017, 119 (23)
  • [37] Multifractal Analysis with the Probability Density Function at the Three-Dimensional Anderson Transition
    Rodriguez, Alberto
    Vasquez, Louella J.
    Romer, Rudolf A.
    PHYSICAL REVIEW LETTERS, 2009, 102 (10)
  • [38] Anderson transition in three-dimensional systems with non-Hermitian disorder
    Huang, Yi
    Shklovskii, B. I.
    PHYSICAL REVIEW B, 2020, 101 (01)
  • [39] Transverse confinement of ultrasound through the Anderson transition in three-dimensional mesoglasses
    Cobus, L. A.
    Hildebrand, W. K.
    Skipetrov, S. E.
    van Tiggelen, B. A.
    Page, J. H.
    PHYSICAL REVIEW B, 2018, 98 (21)
  • [40] Quantum electrodynamics of a superconductor-insulator phase transition
    Kuzmin, R.
    Mencia, R.
    Grabon, N.
    Mehta, N.
    Lin, Y-H
    Manucharyan, V. E.
    NATURE PHYSICS, 2019, 15 (09) : 930 - +