Heart Sound Abnormality Detection From Multi-Institutional Collaboration: Introducing a Federated Learning Framework

被引:2
|
作者
Qiu, Wanyong [1 ,2 ]
Quan, Chen [1 ,2 ]
Zhu, Lixian [1 ,2 ]
Yu, Yongzi [1 ,2 ]
Wang, Zhihua [3 ]
Ma, Yu [1 ,2 ]
Sun, Mengkai [1 ,2 ]
Chang, Yi [4 ]
Qian, Kun [1 ,5 ]
Hu, Bin [1 ,5 ]
Yamamoto, Yoshiharu [3 ]
Schuller, Bjorn W.
机构
[1] Beijing Inst Technol, Minist Educ, Key Lab Brain Hlth Intelligent Evaluat & Intervent, Beijing, Peoples R China
[2] Beijing Inst Technol, Sch Med Technol, Sch Comp Sci, Beijing, Peoples R China
[3] Univ Tokyo, Grad Sch Educ, Educ Physiol Lab, Tokyo, Japan
[4] Imperial Coll London, GLAM Grp Language Audio & Mus, London, England
[5] Beijing Inst Technol, Sch Med Technol, Sch Comp Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical diagnostic imaging; Data models; Hospitals; Medical services; Heart; Artificial intelligence; Privacy; Computer audition; federated learning; healthcare; heart sound; information security; CARDIOVASCULAR-DISEASES; DEPRESSION DETECTION; CHALLENGES; NETWORK; SYSTEM;
D O I
10.1109/TBME.2024.3393557
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Early diagnosis of cardiovascular diseases is a crucial task in medical practice. With the application of computer audition in the healthcare field, artificial intelligence (AI) has been applied to clinical non-invasive intelligent auscultation of heart sounds to provide rapid and effective pre-screening. However, AI models generally require large amounts of data which may cause privacy issues. Unfortunately, it is difficult to collect large amounts of healthcare data from a single centre. Methods: In this study, we propose federated learning (FL) optimisation strategies for the practical application in multi-centre institutional heart sound databases. The horizontal FL is mainly employed to tackle the privacy problem by aligning the feature spaces of FL participating institutions without information leakage. In addition, techniques based on deep learning have poor interpretability due to their "black-box" property, which limits the feasibility of AI in real medical data. To this end, vertical FL is utilised to address the issues of model interpretability and data scarcity. Conclusion: Experimental results demonstrate that, the proposed FL framework can achieve good performance for heart sound abnormality detection by taking the personal privacy protection into account. Moreover, using the federated feature space is beneficial to balance the interpretability of the vertical FL and the privacy of the data. Significance: This work realises the potential of FL from research to clinical practice, and is expected to have extensive application in the federated smart medical system.
引用
收藏
页码:2802 / 2813
页数:12
相关论文
共 50 条
  • [21] Federated and ensemble learning framework with optimized feature selection for heart disease detection
    Hrizi, Olfa
    Gasmi, Karim
    Alyami, Abdulrahman
    Alkhalil, Adel
    Alrashdi, Ibrahim
    Alqazzaz, Ali
    Ben Ammar, Lassaad
    Mrabet, Manel
    Abdalrahman, Alameen E. M.
    Yahyaoui, Samia
    AIMS MATHEMATICS, 2025, 10 (03): : 7290 - 7318
  • [22] Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study
    Quon, J. L.
    Bala, W.
    Chen, L. C.
    Wright, J.
    Kim, L. H.
    Han, M.
    Shpanskaya, K.
    Lee, E. H.
    Tong, E.
    Iv, M.
    Seekins, J.
    Lungren, M. P.
    Braun, K. R. M.
    Poussaint, T. Y.
    Laughlin, S.
    Taylor, M. D.
    Lober, R. M.
    Vogel, H.
    Fisher, P. G.
    Grant, G. A.
    Ramaswamy, V.
    Vitanza, N. A.
    Ho, C. Y.
    Edwards, M. S. B.
    Cheshier, S. H.
    Yeom, K. W.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2020, 41 (09) : 1718 - 1725
  • [23] Initial results from a multi-institutional collaboration to monitor harmful algal blooms in South Carolina
    Lewitus, AJ
    Holland, AF
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2003, 81 (1-3) : 361 - 371
  • [24] Is Hepatic Resection for Large or Multifocal Intrahepatic Cholangiocarcinoma Justified? Results from a Multi-Institutional Collaboration
    Gaya Spolverato
    Yuhree Kim
    Sorin Alexandrescu
    Irinel Popescu
    Hugo P. Marques
    Luca Aldrighetti
    T. Clark Gamblin
    John Miura
    Shishir K. Maithel
    Malcolm H. Squires
    Carlo Pulitano
    Charbel Sandroussi
    Gilles Mentha
    Todd W. Bauer
    Timothy Newhook
    Feng Shen
    George A. Poultsides
    J. Wallis Marsh
    Timothy M. Pawlik
    Annals of Surgical Oncology, 2015, 22 : 2218 - 2225
  • [25] Is Hepatic Resection for Large or Multifocal Intrahepatic Cholangiocarcinoma Justified? Results from a Multi-Institutional Collaboration
    Spolverato, Gaya
    Kim, Yuhree
    Alexandrescu, Sorin
    Popescu, Irinel
    Marques, Hugo P.
    Aldrighetti, Luca
    Gamblin, T. Clark
    Miura, John
    Maithel, Shishir K.
    Squires, Malcolm H.
    Pulitano, Carlo
    Sandroussi, Charbel
    Mentha, Gilles
    Bauer, Todd W.
    Newhook, Timothy
    Shen, Feng
    Poultsides, George A.
    Marsh, J. Wallis
    Pawlik, Timothy M.
    ANNALS OF SURGICAL ONCOLOGY, 2015, 22 (07) : 2218 - 2225
  • [26] Initial Results from a Multi-Institutional Collaboration to Monitor Harmful Algal Blooms in South Carolina
    Alan J. Lewitus
    A. Fred Holland
    Environmental Monitoring and Assessment, 2003, 81 : 361 - 371
  • [27] FedFTN: Personalized federated learning with deep feature transformation network for multi-institutional low-count PET denoising
    Zhou, Bo
    Xie, Huidong
    Liu, Qiong
    Chen, Xiongchao
    Guo, Xueqi
    Feng, Zhicheng
    Hou, Jun
    Zhou, S. Kevin
    Li, Biao
    Rominger, Axel
    Shi, Kuangyu
    Duncan, James S.
    Liu, Chi
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [28] The surgical learning curve for positive surgical margins after robot-assisted radical prostatectomy: Results from a multi-institutional collaboration
    Bravi, C. A.
    Piazza, P.
    Mazzone, E.
    Sarchi, L.
    Scarcella, S.
    Puliatti, S.
    Knipper, S.
    Dell'Oglio, P.
    Galfano, A.
    Suardi, N.
    Terrone, C.
    Autorino, R.
    Falagario, U.
    Carrieri, G.
    Galosi, A.
    Schiavina, R.
    De Groote, R.
    Moschovas, M.
    Patel, V
    Vickers, A.
    Briganti, A.
    Montorsi, F.
    Mottrie, A.
    EUROPEAN UROLOGY, 2022, 81 : S1706 - S1707
  • [29] The surgical learning curve for positive surgical margins after robot-assisted radical prostatectomy: Results from a multi-institutional collaboration
    Bravi, C. A.
    Dall'Oglio, P.
    Mazzone, E.
    De, Groote R.
    Falagario, U.
    Schiavina, R.
    Piazza, P.
    Borghesi, M.
    Scarcella, S.
    Moschovas, M. C.
    Turri, F.
    Andras, I
    Di, Maida F.
    Carrieri, G.
    Terrone, C.
    Autorino, R.
    Patel, V
    Porpiglia, F.
    Bocciardi, A.
    Minervini, A.
    Montorsi, F.
    Rha, K. H.
    Mottrie, A.
    EUROPEAN UROLOGY, 2023, 83
  • [30] THE SURGICAL LEARNING CURVE FOR POSITIVE SURGICAL MARGINS AFTER ROBOT-ASSISTED RADICAL PROSTATECTOMY: RESULTS FROM A MULTI-INSTITUTIONAL COLLABORATION
    Bravi, Carlo
    Dall'Oglio, Paolo
    Mazzone, Elio
    De Groote, Ruben
    Falagario, Ugo
    Schiavina, Riccardo
    Piazza, Pietro
    Borghesi, Marco
    Scarcella, Simone
    Moschovas, Marcio Covas
    Turri, Filippo
    Andras, Iulia
    Di Maida, Fabrizio
    Carrieri, Giuseppe
    Terrone, Carlo
    Autorino, Riccardo
    Patel, Vipul
    Porpiglia, Francesco
    Bocciardi, Aldo
    Minervini, Andrea
    Montorsi, Francesco
    Rha, Koon Ho
    Mottrie, Alexandre
    JOURNAL OF UROLOGY, 2023, 209 : E1151 - E1151