Subsequent enhancement of mechanical properties using heat treatment of steel/copper bimetallic structures manufactured by laser powder bed fusion

被引:0
|
作者
Chen, Jie [1 ]
Bi, Guijun [1 ]
Zhao, Dake [1 ]
Wang, Di [2 ]
Zhang, Mingkang [3 ]
Xiao, Yunmian [4 ]
机构
[1] Guangdong Acad Sci, Inst Intelligent Mfg, Guangzhou 510070, Peoples R China
[2] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Peoples R China
[3] Guangdong Ocean Univ, Sch Mech & Energy Engn, Yangjiang 529500, Peoples R China
[4] Guangzhou Univ, Sch Mech & Elect Engn, Guangzhou 510006, Peoples R China
关键词
Laser powder bed fusion; Bimetallic structure; Subsequent heat treatment; Microstructure; Mechanical properties; STAINLESS-STEEL; COPPER; MULTIMATERIAL; FE; PENETRATION; DIFFUSION; CRACKING; ALLOY; IRON;
D O I
10.1016/j.jmrt.2024.11.213
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The steel/copper bimetallic structures inherit both the excellent thermal/electrical conductivity of copper alloys and the mechanical strength of steel, making it valuable for applications in heat exchangers, injection molds and the power industry. Laser powder bed fusion (LPBF) is a promising manufacturing method for the fabrication of steel/copper bimetallic structures, but the inhomogeneous heterogeneous interfaces still need to be subsequently processed to further enhance their mechanical properties. In this investigation, an attempt was made to optimize the interfacial microstructure of steel/copper bimetallic structures fabricated by the LPBF process through annealing treatment to improve their interfacial strength. As a result, the annealing treatment increased the interfacial bonding strength of the steel/copper bimetallic structure by 28% and without reducing the elongation. This is attributed to the elemental homogenization and internal stress release during heat treatment, as well as the mechanically interlocked structure of fine crystals embedded in coarse crystals formed by Cu/Fe interdiffusion at the boundary of the steel/fusion zone. However, no significant phase transitions were identified in the heterogeneous interface. A suitable heat treatment process can diffusely distribute the Cu/Fe immiscible phase and maintain fine grains. This work discusses in detail the microstructure evolution under different annealing treatments as well as the underlying mechanisms for the improvement of mechanical properties, providing a simple and effective method for post-treatment reinforcing the heterogeneous interface of 316L/CuSn10 bimetallic structure fabricated by LPBF.
引用
收藏
页码:8944 / 8957
页数:14
相关论文
共 50 条
  • [41] Process Evaluation of AISI 4340 Steel Manufactured by Laser Powder Bed Fusion
    Jelis, Elias
    Hespos, Michael R.
    Ravindra, Nuggehalli M.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2018, 27 (01) : 63 - 71
  • [42] Tailoring the nanostructure of laser powder bed fusion additively manufactured maraging steel
    Allam, T.
    Pradeep, K. G.
    Koehnen, P.
    Marshal, A.
    Schleifenbaum, J. H.
    Haase, C.
    ADDITIVE MANUFACTURING, 2020, 36
  • [43] Process Evaluation of AISI 4340 Steel Manufactured by Laser Powder Bed Fusion
    Elias Jelis
    Michael R. Hespos
    Nuggehalli M. Ravindra
    Journal of Materials Engineering and Performance, 2018, 27 : 63 - 71
  • [44] Effect of heat treatment on microstructure and mechanical properties of AlSi10Mg fabricated using laser powder bed fusion
    Huang, Nancy
    Luo, Qixiang
    Bartles, Dean L.
    Simpson, Timothy W.
    Beese, Allison M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 895
  • [45] UNIAXIAL CREEP PROPERTIES OF 316L STAINLESS STEEL MANUFACTURED BY LASER POWDER BED FUSION
    Sandmann, Paul
    Milne, Amy J.
    Davies, Catrin M.
    PROCEEDINGS OF ASME 2023 PRESSURE VESSELS & PIPING CONFERENCE, PVP2023, VOL 5, 2023,
  • [46] Characterization of compact heat exchangers manufactured by laser powder bed fusion technology
    G. Zilio
    D. G. Borges
    M. V. V. Mortean
    J. L. G. Oliveira
    G. B. Dutra
    K. V. Paiva
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [47] Effect of heat treatment on microstructure and mechanical properties of 17-4PH stainless steel manufactured by laser-powder bed fusion (vol 26, pg 5707, 2023)
    Li, Cong
    Chen, Yunlong
    Zhang, Xiaoyong
    Liu, Tingting
    Peng, Yong
    Wang, Kehong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 1647 - 1647
  • [48] A novel 2.1 GPa martensitic stainless steel manufactured by laser powder bed fusion and post treatment
    Wang, Qipeng
    Liang, Yuzheng
    Chen, Xinsheng
    Yang, Ziwei
    Dong, Kewei
    Peng, Yong
    Zhou, Qi
    Wang, Kehong
    Kong, Jian
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 36 : 1930 - 1937
  • [49] Characterization of compact heat exchangers manufactured by laser powder bed fusion technology
    Zilio, G.
    Borges, D. G.
    Mortean, M. V. V.
    Oliveira, J. L. G.
    Dutra, G. B.
    Paiva, K. V.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (08)
  • [50] Methodology to predict mechanical properties of PA-12 lattice structures manufactured by powder bed fusion
    Rodriguez-Aparicio, R.
    Alegre, J. M.
    Verbeeten, W. M. H.
    Lorenzo-Banuelos, M.
    Cuesta, I. I.
    ADDITIVE MANUFACTURING, 2023, 78