Simulation and mechanical testing of 3D printing shin guard composite materials

被引:0
|
作者
Alarifi, Ibrahim M. [1 ]
机构
[1] Majmaah Univ, Coll Engn, Dept Mech & Ind Engn, Al Majmaah 11952, Riyadh, Saudi Arabia
关键词
3D printing; shin guards; composite materials; carbon fibre reinforcement; impact resistance; PROCESS PARAMETERS; PETG; PERFORMANCE; BEHAVIOR; FIBER;
D O I
10.1080/17452759.2024.2411022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study critically examines the composite material's mechanical properties and performance for 3D-printed shin guards. It contains a thermoplastic polymer matrix with short carbon fibre reinforcement. Shin guard stress and deformation under impact loading were modelled using FEA models. The composite material was 3D-printed and tested for tensile, flexural, and impact properties. The entire cycle of FEA models and careful mechanical testing allows for the development and evaluation of new composite materials and designs. The finite element analysis, such as maximum von Mises stress, is 2890.5 MPa. The carbon fibre-reinforced composite's mechanical properties, including tensile strength, flexural strength, and impact resistance, showed a considerable improvement over those of the unreinforced polymer. The solid design could be heavier and less adaptable than the pattern. Compared to unreinforced polymers, carbon fibre improves strength, stiffness, and impact resistance for the 3D-printed composite. This result thus proves that 3D-printed carbon fibre-reinforced composites could make superior sports protective equipment like shin guards. The FEA calculations and extensive mechanical testing provide a dependable framework for creating and testing these new composite materials and systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Colloidal Materials for 3D Printing
    Zhu, Cheng
    Pascall, Andrew J.
    Dudukovic, Nikola
    Worsley, Marcus A.
    Kuntz, Joshua D.
    Duoss, Eric B.
    Spadaccini, Christopher M.
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 10, 2019, 10 : 17 - 42
  • [42] 3D printing materials in Maastricht
    Brookes, Kenneth J.A.
    Metal Powder Report, 2015, 70 (02) : 68 - 78
  • [43] Metallic materials for 3D printing
    Suman Das
    David L. Bourell
    S. S. Babu
    MRS Bulletin, 2016, 41 : 729 - 741
  • [44] Innovative materials for 3D printing
    Konstruktion, 2015, 67 (11-12):
  • [45] Metallic materials for 3D printing
    Das, Suman
    Bourell, David L.
    Babu, S. S.
    MRS BULLETIN, 2016, 41 (10) : 729 - 741
  • [46] 3D printing with cellulose materials
    Wang, Qianqian
    Sun, Jianzhong
    Yao, Qian
    Ji, Chencheng
    Liu, Jun
    Zhu, Qianqian
    CELLULOSE, 2018, 25 (08) : 4275 - 4301
  • [47] Research of mechanical properties of 3D braided composite materials
    Yang, Chao-Kun
    Cailiao Gongcheng/Journal of Materials Engineering, 2002, (07):
  • [48] Influence of Printing Orientation on the Mechanical Properties of Provisional Polymeric Materials Produced by 3D Printing
    Kaiahara, Fabio Hideo
    Pizi, Eliane Cristina Gava
    Straioto, Fabiana Gouveia
    Galvani, Lucas David
    Kuga, Milton Carlos
    Arrue, Thalita Ayres
    Junior, Ageu Raupp
    So, Marcus Vinicius Reis
    Pereira, Jefferson Ricardo
    Vidotti, Hugo
    POLYMERS, 2025, 17 (03)
  • [49] Orthopaedic 3D printing and simulation
    Lim, Chae Won
    Seon, Jae Myung
    Moon, Young Lae
    ANNALS OF JOINT, 2018, 3 (08):
  • [50] An efficient MultiGrid solver for the 3D simulation of composite materials
    Gu, Hanfeng
    Rethore, Julien
    Baietto, Marie-Christine
    Sainsot, Philippe
    Lecomte-Grosbras, Pauline
    Venner, Cornelis H.
    Lubrecht, Antonius A.
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 112 : 230 - 237