An Energy-Efficient Collaborative Offloading Scheme With Heterogeneous Tasks for Satellite Edge Computing

被引:0
|
作者
Zhang, Changzhen [1 ]
Yang, Jun [1 ]
机构
[1] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Satellites; Low earth orbit satellites; Servers; Delays; Edge computing; Collaboration; Energy consumption; Computer architecture; Real-time systems; Internet of Things; Satellite edge computing; offloading scheme; energy-efficient; Markov chain; heterogeneous tasks; NETWORKS;
D O I
10.1109/TNSE.2024.3476968
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Satellite edge computing (SEC) can offer task computing services to ground users, particularly in areas lacking terrestrial network coverage. Nevertheless, given the limited energy of low earth orbit (LEO) satellites, they cannot be used to process numerous computational tasks. Furthermore, most existing task offloading methods are designed for homogeneous tasks, which obviously cannot meet service requirements of various computational tasks. In this work, we investigate energy-efficient collaborative offloading scheme with heterogeneous tasks for SEC to save energy and improve efficiency. Firstly, by dividing computational tasks into delay-sensitive (DS) and delay-tolerant (DT) tasks, we propose a collaborative service architecture with ground edge, satellite edge, and cloud, where specific task offloading schemes are given for both sparse and dense user scenarios to reduce the energy consumption of LEO satellites. Secondly, to reduce the delay and failure rate of DS tasks, we propose an access threshold strategy for DS tasks to control the queue length and facilitate load balancing among multiple computing platforms. Thirdly, to evaluate the proposed offloading scheme, we develop the continuous-time Markov chain (CTMC) to model the traffic load on computing platforms, and the stationary distribution is solved employing the matrix-geometric method. Finally, numerical results for SEC are presented to validate the effectiveness of the proposed offloading scheme.
引用
收藏
页码:6396 / 6407
页数:12
相关论文
共 50 条
  • [41] Multihop Offloading of Multiple DAG Tasks in Collaborative Edge Computing
    Sahni, Yuvraj
    Cao, Jiannong
    Yang, Lei
    Ji, Yusheng
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (06) : 4893 - 4905
  • [42] Energy-Efficient Collaborative Task Offloading in D2D-assisted Mobile Edge Computing Networks
    Zhou, Jizhe
    Zhang, Xing
    Wang, Wenbo
    Zhang, Yan
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [43] Towards Energy-Efficient Heterogeneous Multicore Architectures for Edge Computing
    Gamatie, Abdoulaye
    Devic, Guillaume
    Sassatelli, Gilles
    Bernabovi, Stefano
    Naudin, Philippe
    Chapman, Michael
    IEEE ACCESS, 2019, 7 : 49474 - 49491
  • [44] Energy-Efficient Collaborative Data Downloading by Using Inter-Satellite Offloading
    Zhang, Manqing
    Zhou, Wuyang
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [45] Learning Based Energy Efficient Task Offloading for Vehicular Collaborative Edge Computing
    Qin, Peng
    Fu, Yang
    Tang, Guoming
    Zhao, Xiongwen
    Geng, Suiyan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8398 - 8413
  • [46] Energy-Efficient Task Caching and Offloading Strategy in Mobile Edge Computing Systems
    Chen, Qian
    Liu, Zhoubin
    Ruan, Linna
    Wang, Zixiang
    Shao, Sujie
    Qi, Feng
    SECURITY WITH INTELLIGENT COMPUTING AND BIG-DATA SERVICES, 2020, 895 : 824 - 837
  • [47] Energy-Efficient Cooperative Offloading for Edge Computing-Enabled Vehicular Networks
    Cho, Hewon
    Cui, Ying
    Lee, Jemin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 10709 - 10723
  • [48] Energy-efficient Offloading Policy for Resource Allocation in Distributed Mobile Edge Computing
    Wang, Chang
    Dong, Chongwu
    Qin, Jinghui
    Yang, Xiaoxing
    Wen, Wushao
    2018 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2018, : 371 - 377
  • [49] Energy-efficient Incremental Offloading of Neural Network Computations in Mobile Edge Computing
    Guo, Guangfeng
    Zhang, Junxing
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [50] Energy-Efficient Edge Offloading in Heterogeneous Industrial IoT Networks for Factory of Future
    Hsu, Che-Wei
    Hsu, Yung-Lin
    Wei, Hung-Yu
    IEEE ACCESS, 2020, 8 : 183035 - 183050