A novel core-shell structure composed of polypyrrole shell and high-entropy oxide/carbon cloth core for high-performance supercapatteries

被引:0
|
作者
Hu, Xiaoying [1 ,2 ]
Duan, Yuzheng [1 ,2 ]
Hao, Zeyu [3 ,4 ]
Meng, Zeshuo [3 ]
Wang, Bo [1 ,2 ]
Kang, Ziqian [1 ,2 ]
Liu, Shujie [1 ,2 ]
Tian, Hongwei [3 ,4 ]
机构
[1] Changchun Univ, Sch Mat Sci & Engn, Changchun 130022, Peoples R China
[2] Changchun Univ, Lab Mat Design & Quantum Simulat, Changchun 130022, Peoples R China
[3] Jilin Univ, Key Lab Automobile Mat, MOE, Changchun 130012, Peoples R China
[4] Jilin Univ, Sch Mat Sci & Engn, Changchun 130012, Peoples R China
关键词
Supercapatteries; High-entropy oxides; Spinel structure; Polypyrrole; Composites; NANOWIRE ARRAYS; ELECTRODE; SUPERCAPACITOR; CONSTRUCTION; FABRICATION;
D O I
10.1016/j.jallcom.2024.176851
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-entropy oxides (HEOs) are promising candidates for supercapattery applications owing to their unique high entropy effect and abundant metal elements to provide high capacitance. However, their poor electrical conductivity, low specific capacitance, and limited stability still need to be addressed. Herein, coaxial core-shell structured electrodes (CoCrFeMnNi)3O4@CC-PPy are prepared by a two-step electrodeposition method. The core-shell electrode structure is formed by depositing (CoCrFeMnNi)3O4 (HEO) nanoparticles on a conductive carbon (CC) cloth followed by electrodeposition of a shell layer composed of highly conductive polypyrrole (PPy) nanospheres. The optimized HEO@CC-PPy-140s electrode prepared by electrodeposition for 140 s exhibits excellent specific capacitance reaching 791 F'g- 1 at a current density of 0.5 A'g- 1, and a specific capacitance retention of 63 % at a high current density of 10 A'g- 1. Importantly, the use of HEO@CC-PPy as a negative electrode in a supercapattery device assembled with an electrodeposited NiCo2O4@CC positive electrode displays a high energy density of 49.2 Wh'kg- 1 and good cycling stability, with a capacitance retention rate of 88.2 % after 3000 charge/discharge cycles. Overall, the proposed coaxial core-shell structure electrode design offers promising potential for the fabrication of supercapatteries with advanced characteristics.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Synergistic effect of cerium oxide with core-shell structure embedded in porous carbon for high-performance lithium-sulfur batteries
    Chen, Xiaochuan
    Li, Libo
    Shan, Yuhang
    Zhou, Da
    Cui, Wenjun
    Zhao, Yangmingyue
    MATERIALS TODAY COMMUNICATIONS, 2021, 27
  • [22] High-Performance Anisotropic Nanocomposites with a Novel Core/shell Microstructure
    Quan, Wei
    Yao, Lulu
    Zheng, Qiang
    Si, Pingzhan
    Bian, Baoru
    Du, Juan
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (13) : 15558 - 15564
  • [23] Polypyrrole Chains Decorated on CoS Spheres: A Core-Shell Like Heterostructure for High-Performance Microwave Absorption
    Liu, Hui
    Cui, Guangzhen
    Li, Ling
    Zhang, Zhi
    Lv, Xuliang
    Wang, Xinxin
    NANOMATERIALS, 2020, 10 (01)
  • [24] Microwave-assisted synthesis of mesoporous high-entropy alloy and core-shell nanoparticles
    Ni, Chuyi
    Guo, Suni
    Butler, Cole
    Veinot, Jonathan G. C.
    NANOSCALE, 2025, 17 (10) : 6072 - 6078
  • [25] A Hierarchically Porous ZIF@LDH Core-Shell Structure for High-Performance Supercapacitors
    Zhao, Zhimin
    Duan, Huiyu
    Pang, Huan
    Zhu, Rongmei
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (07) : 845 - 849
  • [26] Carbon nanofiber/cobalt oxide nanopyramid core-Shell nanowires for high-performance lithium-ion batteries
    An, Geon-Hyoung
    Ahn, Hyo-Jin
    JOURNAL OF POWER SOURCES, 2014, 272 : 828 - 836
  • [27] Formation of core-shell structure in high entropy alloy coating by laser cladding
    Zhang, Hui
    Wu, Wanfei
    He, Yizhu
    Li, Mingxi
    Guo, Sheng
    APPLIED SURFACE SCIENCE, 2016, 363 : 543 - 547
  • [28] Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes
    Lu, Xiaoyan
    Shen, Chen
    Zhang, Zeyang
    Barrios, Elizabeth
    Zhai, Lei
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) : 4041 - 4049
  • [29] Design and fabrication of carbon fiber/carbonyl iron core-shell structure composites as high-performance microwave absorbers
    Liu Yuan
    Liu Xiangxuan
    Li Rong
    Wen Wu
    Wang Xuanjun
    RSC ADVANCES, 2015, 5 (12) : 8713 - 8720
  • [30] Facile synthesis of vanadium pentoxide@carbon core-shell nanowires for high-performance supercapacitors
    Guo, Yan
    Li, Jun
    Chen, Mingdong
    Gao, Guizhi
    JOURNAL OF POWER SOURCES, 2015, 273 : 804 - 809