Insights from Techno-Economic Analysis Can Guide the Design of Low-Temperature CO2 Electrolyzers toward Industrial Scaleup

被引:2
|
作者
da Cunha, Shashwati C. [1 ]
Resasco, Joaquin [1 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 11期
基金
美国国家科学基金会;
关键词
FUEL; ELECTROREDUCTION; ELECTROSYNTHESIS; REDUCTION; CHEMICALS;
D O I
10.1021/acsenergylett.4c02647
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The field of CO2 reduction has identified several challenges that must be overcome to realize its immense potential to simultaneously close the carbon cycle, replace fossil-based chemical feedstocks, and store renewable electricity. However, frequently cited research targets were set without quantitatively analyzing their impact on economic viability. Through a physics-informed techno-economic assessment, we offer guidance on top priorities for CO2 reduction. Although separations dominate capital cost, increasing single-pass conversion is unnecessary because it leads to selectivity loss in current membrane electrode assemblies. Decoupling selectivity and single-pass conversion by moving away from a plug flow reactor design would reduce the base case levelized cost from $1.22/kg(CO) to $0.97/kg(CO), as impactful as eliminating CO2R overpotential. Operating at high current densities (>500 mA/cm(2)) is undesirable unless cell voltages can be lowered. We confirm that levelized product cost is dominated by the cost of electricity to drive electrolysis. Although wholesale wind and solar electricity are cheaper than retail electricity, their capacity factors are too low for economical operation. Adding energy storage to increase the capacity factor of solar electricity triples the capital cost of the process. By updating research priorities based on fundamental electrolyzer behavior, we hope this work accelerates the practical application of CO2 reduction.
引用
收藏
页码:5550 / 5561
页数:12
相关论文
共 50 条
  • [21] Evaluation of alternative processes of CO2 methanation: Design, optimization, control, techno-economic and environmental analysis
    Uddin, Zeeshan
    Yu, Bor-Yih
    Lee, Hao-Yeh
    JOURNAL OF CO2 UTILIZATION, 2022, 60
  • [22] Design and techno-economic analysis of direct CO2 capturing with integrated photobioreactors as a building fa?ade
    Vajdi, Shaghayegh
    Aslani, Alireza
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 56
  • [23] Evaluation of alternative processes of CO2 methanation: Design, optimization, control, techno-economic and environmental analysis
    Uddin, Zeeshan
    Yu, Bor-Yih
    Lee, Hao-Yeh
    Journal of CO2 Utilization, 2022, 60
  • [24] Evaluation of an alternative process for the production of hydrocarbons from CO2: Techno-economic and environmental analysis
    Santos, Magno Fonseca
    Bresciani, Antonio Esio
    Teixeira, Alexandre Mendonca
    Alves, Rita Maria Brito
    JOURNAL OF CLEANER PRODUCTION, 2024, 466
  • [25] Techno-economic Analysis of Direct Air Carbon Capture with CO2 Utilisation
    Daniel, Thorin
    Masini, Alice
    Milne, Cameron
    Nourshagh, Neeka
    Iranpour, Cameron
    Xuan, Jin
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 2
  • [26] Techno-Economic Analysis of Mineralization and Utilization of CO2 in Recycled Concrete Aggregates
    Goh, Wayne
    Ye, Suming
    Yong, Roy Ou
    Tham, Kit Huan
    Wang, Cun
    Tao, Longgang
    Cheng, Shuying
    PROCESSES, 2025, 13 (02)
  • [27] Absorption principle and techno-economic analysis of CO2 absorption technologies: A review
    Zhang, Chaoran
    2020 INTERNATIONAL SYMPOSIUM ON ENERGY ENVIRONMENT AND GREEN DEVELOPMENT, 2021, 657
  • [28] Analysis of CO2 emissions and techno-economic feasibility of an electric commercial vehicle
    Moreira Falcao, Eduardo Aparecido
    Rodrigues Teixeira, Ana Carolina
    Sodre, Jose Ricardo
    APPLIED ENERGY, 2017, 193 : 297 - 307
  • [29] ADSORPTION METHOD FOR CO2 CAPTURE: EXPERIMENTAL RESULTS AND TECHNO-ECONOMIC ANALYSIS
    Smutna, J.
    Stefanica, J.
    Vitvarova, M.
    Ciahotny, K.
    Pilar, L.
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY, 1ST EDITION, 2016, : 321 - 324
  • [30] Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation
    Lv, Zongze
    Du, Hong
    Xu, Shaojun
    Deng, Tao
    Ruan, Jiaqi
    Qin, Changlei
    APPLIED ENERGY, 2024, 355