Deep reinforcement learning for dynamic distributed job shop scheduling problem with transfers

被引:7
|
作者
Lei, Yong [1 ]
Deng, Qianwang [1 ]
Liao, Mengqi [1 ]
Gao, Shuocheng [1 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Technol Vehicle, Changsha 410082, Peoples R China
关键词
Distributed job shop scheduling problem; Random job arrivals; Operation transfer; Deep reinforcement learning; Dynamic real-time scheduling; GENETIC ALGORITHM; SYSTEM; RULE;
D O I
10.1016/j.eswa.2024.123970
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic events and transportation constraints would significantly affect the full utilization of resources and the reduction of production costs in distributed job shops. Therefore, in this paper, a deep reinforcement learning algorithm (DRL)-based real-time scheduling method is developed to minimize the mean tardiness of the dynamic distributed job shop scheduling problem with transfers (DDJSPT) considering random job arrivals. Firstly, the proposed DDJSPT is modeled as a Markov decision process (MDP). Then, ten problem-oriented state features covering four aspects of factories, machines, jobs, and operations are elaborately extracted from the dynamic distributed job shop. After that, eleven composite rules considering the uniqueness of DDJSPT are constructed as a pool of actions to intelligently prioritize unfinished jobs and allocate the selected job to an appropriate factory. Moreover, a justified reward function adapted from the objective is designed for better convergence of DRLs. Subsequently, five DRLs are employed to address the DDJSPT, encompassing deep Q-network (DQN), double DQN (DDQN), dueling DQN (DlDQN), trust region policy optimization (TRPO), and proximal policy optimization (PPO). Finally, grounded in numerical comparison experiments under 243 production configurations of the DDJSPT, the effectiveness and generalization of DRL-based scheduling methods are credibly verified and confirmed.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] Job shop smart manufacturing scheduling by deep reinforcement learning
    Serrano-Ruiz, Julio C.
    Mula, Josefa
    Poler, Raul
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2024, 38
  • [32] A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem
    Yiming Gu
    Ming Chen
    Liang Wang
    Applied Intelligence, 2023, 53 : 18925 - 18958
  • [33] A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem
    Gu, Yiming
    Chen, Ming
    Wang, Liang
    APPLIED INTELLIGENCE, 2023, 53 (15) : 18925 - 18958
  • [34] An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers
    Luo, Qiang
    Deng, Qianwang
    Gong, Guiliang
    Zhang, Like
    Han, Wenwu
    Li, Kexin
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 160
  • [35] A novel method for solving dynamic flexible job-shop scheduling problem via DIFFormer and deep reinforcement learning
    Wan, Lanjun
    Cui, Xueyan
    Zhao, Haoxin
    Fu, Long
    Li, Changyun
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 198
  • [36] A spatial pyramid pooling-based deep reinforcement learning model for dynamic job-shop scheduling problem
    Wu, Xinquan
    Yan, Xuefeng
    COMPUTERS & OPERATIONS RESEARCH, 2023, 160
  • [37] Deep reinforcement learning-based memetic algorithm for solving dynamic distributed green flexible job shop scheduling problem with finite transportation resources
    Zhou, Xinxin
    Wang, Fuyu
    Wu, Bin
    Li, Yan
    Shen, Nannan
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 94
  • [38] A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem
    Xu, Shuai
    Li, Yanwu
    Li, Qiuyang
    ELECTRONICS, 2024, 13 (18)
  • [39] Low-Carbon Flexible Job Shop Scheduling Problem Based on Deep Reinforcement Learning
    Tang, Yimin
    Shen, Lihong
    Han, Shuguang
    SUSTAINABILITY, 2024, 16 (11)
  • [40] Deep Reinforcement Learning for the Job Shop Scheduling Problem: Reference Axes for Modelling, Implementation and Validation
    Serrano-Ruiz, Julio C.
    Mula, Josefa
    Poler, Raul
    IOT AND DATA SCIENCE IN ENGINEERING MANAGEMENT, 2023, 160 : 93 - 100