Recent Progress in Heat-resistant Aluminum Alloy Fabricated by Laser Powder Bed Fusion Additive Manufacturing

被引:0
|
作者
Liu, Shujun [1 ]
Xiao, Wenlong [2 ]
Yang, Changyi [2 ]
Wu, Shufan [2 ]
机构
[1] Army Logistics Academy of PLA, Chongqing,401311, China
[2] School of Materials Science and Engineering, Beihang University, Beijing,100191, China
来源
Cailiao Daobao/Materials Reports | 2024年 / 38卷 / 18期
关键词
Aerospace industry - Aluminum powder metallurgy - High strength alloys - High temperature effects - Lead alloys - Mercury amalgams;
D O I
10.11896/cldb.24080026
中图分类号
学科分类号
摘要
With the rapid development of the aerospace industry, the demand for high-performance heat-resistant aluminum alloys will continue to increase in the future. In order to realize the one-step molding of complex components, laser powder bed fusion (L-PBF) additive manufacturing technology has become a hot research topic. The building parts manufactured by L-PBF additive manufacturing have a better overall performance than conventional casting manufacturing. At present, the researches on room-temperature high strength-ductility aluminum alloys are relatively comprehensive, but the researches on heat-resistant aluminum alloys are still in the initial stage. This review firstly introduces the L-PBF additive manufacturing technology, then summarizes the research on heat-resistant aluminum alloy systems and corresponding high-temperature properties in recent years, presents a brief overview of the current problems and challenges, finally looks forward to the main research interests in the future. © 2024 Cailiao Daobaoshe/ Materials Review. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [21] Research Progress and Challenges in Process Intelligent Monitoring of Laser Powder Bed Fusion Additive Manufacturing
    Zhao Z.
    Wang C.
    Zhang X.
    Chen X.
    Li Y.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (19): : 253 - 276
  • [22] Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion
    Hyer, Holden
    Zhou, Le
    Park, Sharon
    Huynh, Thinh
    Mehta, Abhishek
    Thapliyal, Saket
    Mishra, Rajiv S.
    Sohn, Yongho
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 103 : 50 - 58
  • [23] Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion
    Holden Hyer
    Le Zhou
    Sharon Park
    Thinh Huynh
    Abhishek Mehta
    Saket Thapliyal
    Rajiv S.Mishra
    Yongho Sohn
    JournalofMaterialsScience&Technology, 2022, 103 (08) : 50 - 58
  • [24] Combined anisotropic and cyclic constitutive model for laser powder bed fusion fabricated aluminum alloy
    FeiFan LI
    Jihong ZHU
    Weihong ZHANG
    Shifeng WEN
    Jingwen SONG
    Jun MA
    Gang FANG
    Chinese Journal of Aeronautics, 2025, 38 (01) : 170 - 189
  • [25] Processability and characterization of A20X aluminum alloy fabricated by laser powder bed fusion
    Ghasri-Khouzani, M.
    Karimialavijeh, H.
    Proebstle, M.
    Batmaz, R.
    Muhammad, W.
    Chakraborty, A.
    Sabiston, T. D.
    Harvey, J. P.
    Martin, E.
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [26] Combined anisotropic and cyclic constitutive model for laser powder bed fusion fabricated aluminum alloy
    Li, Fei-Fan
    Zhu, Jihong
    Zhang, Weihong
    Wen, Shifeng
    Song, Jingwen
    Ma, Jun
    Fang, Gang
    CHINESE JOURNAL OF AERONAUTICS, 2025, 38 (01)
  • [27] Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion
    Wei, Chao
    Li, Lin
    VIRTUAL AND PHYSICAL PROTOTYPING, 2021, 16 (03) : 347 - 371
  • [28] Influence of additive manufacturing by laser powder bed fusion on the susceptibility of Alloy 718 to hydrogen embrittlement
    Hesketh, J.
    McClelland, N.
    Zhang, Y.
    Green, C.
    Turnbull, A.
    CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2021, 56 (06) : 565 - 574
  • [29] Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion
    Hyer, Holden
    Zhou, Le
    Benson, George
    McWilliams, Brandon
    Cho, Kyu
    Sohn, Yongho
    ADDITIVE MANUFACTURING, 2020, 33
  • [30] Keyhole pores reduction in laser powder bed fusion additive manufacturing of nickel alloy 625
    Yeung, H.
    Kim, F. H.
    Donmez, M. A.
    Neira, J.
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2022, 183