Comparative analysis of flexural strength prediction in SFRC using frequentist, Bayesian, and Machine Learning approaches

被引:0
|
作者
De La Rosa, Ángel [1 ]
Sáinz-Aja, José [2 ]
Rivas, Isaac [2 ]
Ruiz, Gonzalo [3 ]
Ferreño, Diego [2 ]
机构
[1] DIMME, Grupo de Durabilidad e Integridad Mecánica de Materiales Estructurales, Universidad Rey Juan Carlos, C. Tulipán s/n, Madrid, Móstoles,28933, Spain
[2] LADICIM (Laboratory of Materials Science and Engineering), ETSI Caminos, C. y P., Universidad de Cantabria, Av. Los Castros 44, Santander,39005, Spain
[3] ETSI Caminos, C. y P. de Ciudad Real, Universidad de Castilla-La Mancha, Av. Camilo José Cela 2, Ciudad Real,13071, Spain
关键词
Compendex;
D O I
10.1016/j.cscm.2024.e03822
中图分类号
学科分类号
摘要
Fiber reinforced concrete
引用
收藏
相关论文
共 50 条
  • [31] The contrast and convergence of Bayesian and frequentist statistical approaches in pharmacoeconomic analysis
    Skrepnek, Grant H.
    PHARMACOECONOMICS, 2007, 25 (08) : 649 - 664
  • [32] Welding strength prediction in nuts to sheets joints: machine learning and ANFIS comparative analysis
    Albak, Bircan
    Erden, Caner
    Unal, Osman
    Akkas, Nuri
    Ozkan, Sinan Serdar
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, 19 (4): : 2477 - 2492
  • [33] 2 PAPERS ON THE COMPARISON OF BAYESIAN AND FREQUENTIST APPROACHES TO STATISTICAL PROBLEMS OF PREDICTION - DISCUSSION
    AITCHISON, J
    THATCHER, AR
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) : 192 - 210
  • [34] Qanat discharge prediction using a comparative analysis of machine learning methods
    Samani, Saeideh
    Vadiati, Meysam
    Kisi, Ozgur
    Ghasemi, Leyla
    Farajzadeh, Reza
    EARTH SCIENCE INFORMATICS, 2024, : 4597 - 4618
  • [35] Prediction of ultimate strength for high strength concrete (HSC) using machine learning approaches - optimized by PSO technique
    P. Ruba
    S. Aarthi
    P. Bhuvaneshwari
    Discover Computing, 28 (1)
  • [36] Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches
    Ullah, Haji Sami
    Khushnood, Rao Arsalan
    Farooq, Furqan
    Ahmad, Junaid
    Vatin, Nikolai Ivanovich
    Ewais, Dina Yehia Zakaria
    MATERIALS, 2022, 15 (09)
  • [37] Customer sentiment analysis and prediction of halal restaurants using machine learning approaches
    Hossain, Md Shamim
    Rahman, Mst Farjana
    Uddin, Md Kutub
    Hossain, Md Kamal
    JOURNAL OF ISLAMIC MARKETING, 2023, 14 (07) : 1859 - 1889
  • [38] Genetic Prediction in Bovine Meat Production: Is Worth Integrating Bayesian and Machine Learning Approaches? a Comprenhensive Analysis
    Ines Fariello, Maria
    Amstrong, Eileen
    Fernandez, Alicia
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 11 - 18
  • [39] Comparative Analysis of Cyber Security Approaches Using Machine Learning in Industry 4.0
    Cebeloglu, F. Sumeyye
    Karakose, Mehmet
    2020 6TH IEEE INTERNATIONAL SYMPOSIUM ON SYSTEMS ENGINEERING (IEEE ISSE 2020), 2020,
  • [40] Comparative Analysis of Classification of Neonatal Bilirubin by Using Various Machine Learning Approaches
    Bhagat, Priti, V
    Raghuwanshi, Mukesh M.
    Bagde, Ashutosh D.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (06)