EXTREMAL AFFINE SUBSPACES AND KHINTCHINE-JARNÍK TYPE THEOREMS

被引:0
|
作者
Huang, Jing-Jing [1 ]
机构
[1] Department of Mathematics and Statistics, University of Nevada, 1664 N. Virginia St., Reno,NV,89557, United States
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Linear-time approximation scheme for k-means clustering of axis-parallel affine subspaces
    Cho, Kyungjin
    Oh, Eunjin
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2023, 112
  • [32] Extremal for a k-Hessian inequality of Trudinger-Moser type
    de Oliveira, J. F.
    do O, J. M.
    Ruf, B.
    MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (3-4) : 1683 - 1706
  • [33] K-K-M-S type theorems in infinite dimensional spaces
    Komiya, H
    MINIMAX THEORY AND APPLICATIONS, 1998, 26 : 121 - 134
  • [34] ON THE EXISTENCE OF EXTREMAL TYPE II Z2k-CODES
    Harada, Masaaki
    Miezaki, Tsuyoshi
    MATHEMATICS OF COMPUTATION, 2014, 83 (287) : 1427 - 1446
  • [37] Extremal functions for a supercritical k-Hessian inequality of Sobolev-type
    de Oliveira, Jose Francisco
    Ubilla, Pedro
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60
  • [38] Some Fixed Point Theorems in K-Metric Type Spaces
    Taheri, A.
    Farajzadeh, Ali
    Suantai, Suthep
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (02): : 855 - 859
  • [39] Suborbits of subspaces of type (m, k) under finite singular general linear groups
    Wang, Kaishun
    Guo, Jun
    Li, Fenggao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (08) : 1360 - 1366
  • [40] On a supercritical k-Hessian inequality of Trudinger-Moser type and extremal functions
    de Oliveira, Jose Francisco
    do O, Joao Marcos
    Ubilla, Pedro
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (06) : 2549 - 2575