Defect-Engineered Coordination Compound Nanoparticles Based on Prussian Blue Analogues for Surface-Enhanced Raman Spectroscopy

被引:3
|
作者
Yu, Xingxing [1 ]
Tang, Xuke [1 ]
Dong, Jun-Yu [1 ]
Deng, Yunjie [1 ]
Saito, Mitsuhiro [2 ,3 ]
Gao, Zhanglei [4 ]
Pancorbo, Pablo Martinez [1 ]
Marumi, Machiko [1 ]
Peterson, Walker [1 ]
Zhang, Huanhuan [1 ]
Kishimoto, Naoki [4 ]
Alodhayb, Abdullah N. [5 ]
Dwivedi, Prabhat K. [6 ,7 ]
Ikuhara, Yuichi [2 ,8 ,9 ]
Kitahama, Yasutaka [1 ,7 ]
Xiao, Ting-Hui [1 ,10 ,11 ]
Goda, Keisuke [1 ,7 ,10 ,12 ,13 ]
机构
[1] Univ Tokyo, Sch Sci, Dept Chem, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Engn Innovat, Tokyo 1138656, Japan
[3] JEOL Ltd, 3-1-2 Musashino, Akishima, Tokyo 1968558, Japan
[4] Tohoku Univ, Dept Chem, Sendai, Miyagi 9808578, Japan
[5] King Saud Univ, King Abdullah Inst Nanotechnol, Riyadh 11451, Saudi Arabia
[6] Indian Inst Technol Kanpur, Ctr Nanosci, Kanpur 208016, Uttar Pradesh, India
[7] LucasLand, Tokyo, Japan
[8] Tohoku Univ, Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[9] Japan Fine Ceram Ctr, Nanostruct Res Lab, 2-4-1 Mutsuno Atsuta, Nagoya, Aichi 4568587, Japan
[10] Natl Inst Quantum & Radiol Sci & Technol, Inst Quantum Life Sci, Chiba 2638555, Japan
[11] Zhengzhou Univ, Sch Phys, Lab Zhongyuan Light, Zhengzhou 450001, Peoples R China
[12] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Hubei, Peoples R China
[13] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
关键词
nanoparticle; defect engineering; coordinationcompound; Prussian blue; surface-enhanced Raman; resonance; SCATTERING; GRADIENT; SPECTRA; FILMS; DNA;
D O I
10.1021/acsnano.4c06972
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for label-free chemical analysis. The emergence of nonmetallic materials as SERS substrates, offering chemical signal enhancements, presents an exciting direction for achieving reproducible and biocompatible SERS, a challenge with traditional metallic substrates. Despite the potential, the realm of nonmetallic SERS substrates, particularly nanoparticles, remains largely untapped. Here, we present defect-engineered coordination compounds (DECCs) based on Prussian blue analogues (PBAs) as a class of nonmetallic nanoparticle-based SERS substrates. We demonstrate the utility and flexibility of the DECC template by incorporating various metal (M) elements into PBAs to synthesize nanoparticles that deliver substantial chemical mechanism (CM)-based enhancements to the Raman signal with a similar to 108-fold increase. The introduction of the M-PBA-based DECC nanoparticles as a class of SERS substrates represents a pioneering stride, enabling the straightforward and systematic exploration of a library of compounds for SERS-based analysis of a wide range of target molecules, especially biomolecules.
引用
收藏
页码:30987 / 31001
页数:15
相关论文
共 50 条
  • [41] Determination of primary aromatic amines using immobilized nanoparticles based surface-enhanced Raman spectroscopy
    Ting Wu
    Hai-Ting Wang
    Bo Shen
    Yi-Ping Du
    Xuan Wang
    Zhen-Ping Wang
    Chuan-Jing Zhang
    Wen-Bin Miu
    Chinese Chemical Letters, 2016, 27 (05) : 745 - 748
  • [42] Quantitative analysis of fenitrothion based on surface-enhanced Raman spectroscopy
    Weng, Shizhuang
    Zheng, Shouguo
    Li, Pan
    Chen, Sheng
    Zeng, Xinhua
    Li, Miao
    Zheng, Xiaoju
    Zhongguo Jiguang/Chinese Journal of Lasers, 2013, 40 (08):
  • [43] Drug Classification Method Based on Surface-Enhanced Raman Spectroscopy
    Yang Zhi-chao
    Cai Jing
    Zhang Hui
    Shi Lu
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (04) : 1168 - 1172
  • [44] Polysaccharide-based substrate for surface-enhanced Raman spectroscopy
    Barbosa, Ingrid Brito
    Barbosa-Dekker, Aneli M.
    Dekker, Robert F. H.
    Bezerra, Arandi Ginane
    de Santana, Henrique
    Orsato, Alexandre
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 249
  • [45] Effects of the surface modification of silver nanoparticles on the surface-enhanced Raman spectroscopy of methylene blue for borohydride-reduced silver colloid
    Dong, Xiao
    Gu, Huaimin
    Kang, Jian
    Yuan, Xiaojuan
    Wu, Jiwei
    JOURNAL OF MOLECULAR STRUCTURE, 2010, 984 (1-3) : 396 - 401
  • [46] Engineered Au@CuO Nanoparticles for Wide-Range Quantitation of Sulfur Ions by Surface-Enhanced Raman Spectroscopy
    Bao, Haoming
    Motobayashi, Kenta
    Ikeda, Katsuyoshi
    ANALYTICAL CHEMISTRY, 2022, 94 (49) : 17169 - 17176
  • [47] Probing catecholamine neurotransmitters based on iron-coordination surface-enhanced resonance Raman spectroscopy label
    Cao, Xiaomin
    Qin, Miao
    Li, Pan
    Zhou, Binbin
    Tang, Xianghu
    Ge, Meihong
    Yang, Liangbao
    Liu, Jinhuai
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 268 : 350 - 358
  • [48] Surface-Enhanced Raman Spectroscopy- and Surface-Enhanced Infrared Absorption-Based Molecular Sensors
    Domingo, C.
    Guerrini, L.
    Leyton, P.
    Campos-Vallette, M.
    Garcia-Ramos, J. V.
    Sanchez-Cortes, S.
    NEW APPROACHES IN BIOMEDICAL SPECTROSCOPY, 2007, 963 : 138 - 151
  • [49] Fabrication of Ag nanoparticles by γ-irradiation: Application to surface-enhanced Raman spectroscopy of fungicides
    Torreggiani, A.
    Jurasekova, Z.
    D'Angelantonio, M.
    Tamba, M.
    Garcia-Ramos, J. V.
    Sanchez-Cortes, S.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 339 (1-3) : 60 - 67
  • [50] Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles
    Emory, SR
    Nie, SM
    ANALYTICAL CHEMISTRY, 1997, 69 (14) : 2631 - 2635