Breather solutions of modified Benjamin–Bona–Mahony equation

被引:0
|
作者
Adamashvili G.T. [1 ]
机构
[1] Technical University of Georgia, Kostava Street 77, Tbilisi
关键词
Generalized perturbation reduction method; Modified Benjamin–Bona–Mahony equation; Nonlinear waves; Vector breather;
D O I
10.1088/1674-1056/abc09d
中图分类号
学科分类号
摘要
New two-component vector breather solution of the modified Benjamin–Bona–Mahony (MBBM) equation is considered. Using the generalized perturbation reduction method, the MBBM equation is reduced to the coupled nonlinear Schrödinger equations for auxiliary functions. Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented. The two-component vector breather and single-component scalar breather of the MBBM equation is compared. © 2021 Institute of Physics Publishing. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [41] The Jacobi elliptic function solutions to a generalized Benjamin-Bona-Mahony equation
    Lai, Shaoyong
    Lv, Xiumei
    Shuai, Mingyou
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (1-2) : 369 - 378
  • [42] Solitary wave solutions of the time fractional Benjamin Bona Mahony Burger equation
    Pavani, K.
    Raghavendar, K.
    Aruna, K.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [43] Asymptotic Σ-Solutions of a Singularly Perturbed Benjamin–Bona–Mahony Equation with Variable Coefficients
    V. H. Samoilenko
    Yu. I. Samoilenko
    Ukrainian Mathematical Journal, 2018, 70 : 266 - 287
  • [44] New Explicit Solutions For Zakharov-Kuznetsov-Benjamin-Bona-Mahony Equation
    Ren, Yue
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2023, 27 (06): : 2683 - 2690
  • [45] Exact traveling soliton solutions for the generalized Benjamin-Bona-Mahony equation
    Malwe Boudoue Hubert
    Nikolai A. Kudryashov
    Mibaile Justin
    Souleymanou Abbagari
    Gambo Betchewe
    Serge Y. Doka
    The European Physical Journal Plus, 133
  • [46] Exact traveling soliton solutions for the generalized Benjamin-Bona-Mahony equation
    Hubert, Malwe Boudoue
    Kudryashov, Nikolai A.
    Justin, Mibaile
    Abbagari, Souleymanou
    Betchewe, Gambo
    Doka, Serge Y.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [47] EXISTENCE AND UNIQUENESS FOR PERIODIC-SOLUTIONS OF BENJAMIN-BONA-MAHONY EQUATION
    MEDEIROS, LA
    MENZALA, GP
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (05) : 792 - 799
  • [48] On the controllability of the linearized Benjamin-Bona-Mahony equation
    Micu, S
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 1016 - 1019
  • [49] Attractors for the generalized Benjamin-Bona-Mahony equation
    Çelebi, AO
    Kalantarov, VK
    Polat, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) : 439 - 451
  • [50] Regularity of attractors for the Benjamin-Bona-Mahony equation
    Wang, BX
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (37): : 7635 - 7645