Solving High-Dimensional Partial Differential Equations Using Tensor Neural Network and A Posteriori Error Estimators

被引:0
|
作者
Wang, Yifan [1 ]
Lin, Zhongshuo [2 ,3 ]
Liao, Yangfei [2 ,3 ]
Liu, Haochen [2 ,3 ]
Xie, Hehu [2 ,3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC,NCMIS, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
北京市自然科学基金;
关键词
Tensor neural network; A posteriori error estimates; Machine learning; Second order elliptic operator; High-dimensional boundary value problems; Eigenvalue problem; ALGORITHM;
D O I
10.1007/s10915-024-02700-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the combination of tensor neural network and a posteriori error estimator, a novel type of machine learning method is proposed to solve high-dimensional boundary value problems with homogeneous and non-homogeneous Dirichlet or Neumann type of boundary conditions and eigenvalue problems of the second-order elliptic operator. The most important advantage of the tensor neural network is that the high-dimensional integrations of tensor neural networks can be computed with high accuracy and high efficiency. Based on this advantage and the theory of a posteriori error estimation, the a posteriori error estimator is adopted to design the loss function to optimize the network parameters adaptively. The applications of tensor neural network and the a posteriori error estimator improve the accuracy of the corresponding machine learning method. The theoretical analysis and numerical examples are provided to validate the proposed methods.
引用
收藏
页数:29
相关论文
共 50 条