Towards Accurate Detection of Diabetic Retinopathy Using Image Processing and Deep Learning

被引:0
|
作者
De Silva, K. Kalindhu Navanjana [1 ]
Fernando, T. Sanduni Kumari Lanka [2 ]
Jayasinghe, L. D. Lakshan Sandaruwan [3 ]
Jayalath, M. H. Dinuka Sandaruwan [4 ]
Karunanayake, Dr. Kasun [5 ]
Madhuwantha, B. A. P. [6 ]
机构
[1] Univ Colombo, Sch Comp, Kaluthara, Sri Lanka
[2] Univ Colombo, Sch Comp, Colombo 06, Sri Lanka
[3] Univ Colombo, Sch Comp, Moronthuduwa, Sri Lanka
[4] Univ Colombo, Sch Comp, Homagama, Colombo, Sri Lanka
[5] Univ Colombo, Sch Comp, Colombo 07, Sri Lanka
[6] Univ Colombo, Sch Comp, Colombo, Sri Lanka
关键词
Diabetic retinopathy; fundus images; computer- assisted analysis; deep learning; image processing; convolutional neural networks component;
D O I
10.14569/IJACSA.2024.0150986
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Diabetic retinopathy (DR) is a critical complication of diabetes, characterized by pathological changes in retinal blood vessels. This paper presents an innovative software application designed for DR detection and staging using fundus images. The system generates comprehensive reports, facilitating treatment planning and improving patient outcomes. Our study aims to develop an affordable computer assisted analysis system for accurate DR assessment, leveraging publicly available fundus image datasets. Key objectives include identifying relevant features for DR staging, developing robust image processing algorithms for lesion detection, and implementing machine learning models for accurate diagnosis. The research employs various pre-processing techniques to enhance image quality and optimize feature extraction. Convolutional Neural Networks (CNNs) are utilized for stage classification, achieving an impressive accuracy of 93.45%. Lesion detection algorithms, including optic disk localization, blood vessel segmentation, and exudate identification, demonstrate promising results in accurately identifying DR-related abnormalities. The developed software product integrates these advancements, providing a user-friendly interface for efficient DR diagnosis and management. Evaluation results validate the effectiveness of the CNN model in stage classification and lesion detection, with high sensitivity and specificity. The study discusses the significance of image augmentation and hyperparameter tuning in improving model performance. Future research directions include enhancing the detection of microaneurysms and hemorrhages, incorporating higher resolution images, and standardizing evaluation methods for lesion detection algorithms. In conclusion, this research underscores the potential of technology in revolutionizing DR diagnosis and management. The developed software product offers a cost-effective solution for early DR detection, emphasizing the importance of accessible healthcare solutions. The findings contribute to advancing the field of DR analysis and inspire further innovation for improved patient care.
引用
收藏
页码:845 / 852
页数:8
相关论文
共 50 条
  • [1] Diabetic retinopathy using image processing and deep learning
    Swain, Debabrata
    Bijawe, Sanket Sanjay
    Akolkar, Prasanna Prasad
    Shinde, Aditya
    Mahajani, Mihir Vijay
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 14 (04) : 397 - 409
  • [2] Diabetic Retinopathy Detection using Deep Learning
    Nguyen, Quang H.
    Muthuraman, Ramasamy
    Singh, Laxman
    Sen, Gopa
    Anh Cuong Tran
    Nguyen, Binh P.
    Chua, Matthew
    ICMLSC 2020: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, 2020, : 103 - 107
  • [3] Diabetic Retinopathy Detection using Deep Learning
    Mane, Deepak
    Ashtagi, Rashmi
    Jotrao, Rutuja
    Bhise, Pratik
    Shinde, Prathamesh
    Kadam, Pratik
    JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (02) : 18 - 27
  • [4] Diabetic Retinopathy Improved Detection Using Deep Learning
    Ayala, Angel
    Ortiz Figueroa, Tomas
    Fernandes, Bruno
    Cruz, Francisco
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [5] Intelligent Diabetic Retinopathy Detection using Deep Learning
    Nugroho, Hanung Adi
    Frannita, Eka Legya
    2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [6] Diabetic Retinopathy Detection Using Deep Learning Models
    Kanakaprabha, S.
    Radha, D.
    Santhanalakshmi, S.
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 75 - 90
  • [7] Automatic Diabetic Retinopathy Detection Using Digital Image Processing
    Palavalasa, Kranthi Kumar
    Sambaturu, Bhavani
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2018, : 72 - 76
  • [8] Diabetic Retinopathy Detection Using Image Processing Techniques: A Study
    Tupe, Aniruddha D.
    Joshi, Yash U.
    Tambe, Snehdeep B.
    Dewan, Jaya H.
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 637 - 646
  • [9] Detection of Diabetic Retinopathy and Maculopathy in Eye Fundus Images Using Deep Learning and Image Augmentation
    Rahim, Sarni Suhaila
    Palade, Vasile
    Almakky, Ibrahim
    Holzinger, Andreas
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2019, 2019, 11713 : 114 - 127
  • [10] Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy
    Mohanty, Cheena
    Mahapatra, Sakuntala
    Acharya, Biswaranjan
    Kokkoras, Fotis
    Gerogiannis, Vassilis C.
    Karamitsos, Ioannis
    Kanavos, Andreas
    SENSORS, 2023, 23 (12)