Diabetic Retinopathy Improved Detection Using Deep Learning

被引:10
|
作者
Ayala, Angel [1 ]
Ortiz Figueroa, Tomas [2 ]
Fernandes, Bruno [1 ]
Cruz, Francisco [2 ,3 ]
机构
[1] Univ Pernambuco, Escola Politecn Pernambuco, BR-50720001 Recife, PE, Brazil
[2] Univ Cent Chile, Escuela Ingn, Santiago 8330601, Chile
[3] Deakin Univ, Sch Informat Technol, Geelong, Vic 3220, Australia
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 24期
关键词
diabetic retinopathy; cross-testing benchmark; deep learning; AUTOMATED IDENTIFICATION; DIAGNOSIS;
D O I
10.3390/app112411970
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Diabetes is a disease that occurs when the body presents an uncontrolled level of glucose that is capable of damaging the retina, leading to permanent damage of the eyes or vision loss. When diabetes affects the eyes, it is known as diabetic retinopathy, which became a global medical problem among elderly people. The fundus oculi technique involves observing the eyeball to diagnose or check the pathology evolution. In this work, we implement a convolutional neural network model to process a fundus oculi image to recognize the eyeball structure and determine the presence of diabetic retinopathy. The model's parameters are optimized using the transfer-learning methodology for mapping an image with the corresponding label. The model training and testing are performed with a dataset of medical fundus oculi images and a pathology severity scale present in the eyeball as labels. The severity scale separates the images into five classes, from a healthy eyeball to a proliferative diabetic retinopathy presence. The latter is probably a blind patient. Our proposal presented an accuracy of 97.78%, allowing for the confident prediction of diabetic retinopathy in fundus oculi images.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Diabetic Retinopathy Detection using Deep Learning
    Nguyen, Quang H.
    Muthuraman, Ramasamy
    Singh, Laxman
    Sen, Gopa
    Anh Cuong Tran
    Nguyen, Binh P.
    Chua, Matthew
    [J]. ICMLSC 2020: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, 2020, : 103 - 107
  • [2] Diabetic Retinopathy Detection using Deep Learning
    Mane, Deepak
    Ashtagi, Rashmi
    Jotrao, Rutuja
    Bhise, Pratik
    Shinde, Prathamesh
    Kadam, Pratik
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (02) : 18 - 27
  • [3] Intelligent Diabetic Retinopathy Detection using Deep Learning
    Nugroho, Hanung Adi
    Frannita, Eka Legya
    [J]. 2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [4] Diabetic Retinopathy Detection Using Deep Learning Models
    Kanakaprabha, S.
    Radha, D.
    Santhanalakshmi, S.
    [J]. UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 75 - 90
  • [5] Deep Learning for the Detection and Classification of Diabetic Retinopathy with an Improved Activation Function
    Bhimavarapu, Usharani
    Battineni, Gopi
    [J]. HEALTHCARE, 2023, 11 (01)
  • [6] Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy
    Mohanty, Cheena
    Mahapatra, Sakuntala
    Acharya, Biswaranjan
    Kokkoras, Fotis
    Gerogiannis, Vassilis C.
    Karamitsos, Ioannis
    Kanavos, Andreas
    [J]. SENSORS, 2023, 23 (12)
  • [7] Detection of Red Lesions in Diabetic Retinopathy using Deep Learning
    Dey, Shramana
    Mitra, Sushmita
    Shankar, B. Uma
    Dhara, Ashis Kumar
    [J]. 2022 IEEE 6TH INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS, CATCON, 2022, : 207 - 211
  • [8] Exudate Detection in Diabetic Retinopathy Using Deep Learning Techniques
    Cincan, Roxana-Georgiana
    Popescu, Dan
    Ichim, Loretta
    [J]. 2021 25TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2021, : 473 - 477
  • [9] Deep Learning Techniques for Diabetic Retinopathy Detection
    Qummar, Sehrish
    Khan, Fiaz Gul
    Shah, Sajid
    Khan, Ahmad
    Din, Ahmad
    Gao, Jinfeng
    [J]. CURRENT MEDICAL IMAGING, 2020, 16 (10) : 1201 - 1213
  • [10] Deep Learning Approach to Diabetic Retinopathy Detection
    Tymchenko, Borys
    Marchenko, Philip
    Spodarets, Dmitry
    [J]. ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 501 - 509