On the analytical soliton approximations to damping forced Zakharov-Kuznetsov equation arising in dissipative nonthermal magnetized plasma

被引:1
|
作者
El-Awady, E., I [1 ]
Hussain, S. [2 ]
Akhtar, N. [2 ]
机构
[1] Port Said Univ, Fac Sci, Dept Phys, Port Said 42521, Egypt
[2] PINSTECH, Theoret Phys Div TPD, Islamabad 44000, Pakistan
关键词
ion-acoustic solitary; damped forced Zakharov-Kuznetsov equation; the reductive perturbation technique; nonthermal electrons; collisional plasma; ACOUSTIC SHOCK-WAVES; ION;
D O I
10.1088/1402-4896/ad81bd
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper aims to analyse the nonlinear characteristics of ion-acoustic solitary waves (IASWs) in a plasma system that is collisional and homogeneous in nature. The system under consideration comprises positive ions, negative ions, and nonthermal electrons and is influenced by an ambient magnetic field. To analyse the system, we utilize the reductive perturbation technique (RPT) and obtain the damped forced Zakharov-Kuznetsov (DFZK) equation. The DFZK equation provides a solitary wave solution when an external periodic force is present. Through numerical analysis of DFZK, we have observed that different parameters, e.g., the nonthermal parameters (r, q), the direction cosine, the temperature ratio of a positive ion to an electron, the temperature ratio of a negative ion to an electron, the density ratio of a negative ion to a positive ion source strength, and the source frequency, affect the phase velocity and the structures of IASWs significantly. This finding could help clarify the plasmas observed in the D- and F-regions of Earth's ionosphere, as well as in laboratory experiments where pair ions and nonthermal electrons are key characteristics.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Solution of the Perturbed Zakharov-Kuznetsov (ZK) Equation Describing Electron-Acoustic Solitary Waves in a Magnetized Plasma
    Elwakil, S. A.
    El-Shewy, E. K.
    Abdelwahed, H. G.
    CHINESE JOURNAL OF PHYSICS, 2011, 49 (03) : 732 - 744
  • [22] Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma
    Seadavvy, Aly R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (01) : 201 - 212
  • [23] Multi-soliton rational solutions for quantum Zakharov-Kuznetsov equation in quantum magnetoplasmas
    Osman, M. S.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (04) : 434 - 443
  • [24] Dynamic behaviors and soliton solutions of the modified Zakharov-Kuznetsov equation in the electrical transmission line
    Zhen, Hui-Ling
    Tian, Bo
    Zhong, Hui
    Jiang, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (05) : 579 - 588
  • [25] Soliton solutions and interactions of the Zakharov-Kuznetsov equation in the electron-positron-ion plasmas
    Qu, Qi-Xing
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Wang, Pan
    Jiang, Yan
    Qin, Bo
    EUROPEAN PHYSICAL JOURNAL D, 2011, 61 (03): : 709 - 715
  • [26] Damped quantum drift Zakharov-Kuznetsov equation for a dissipative inhomogeneous partially degenerate plasma with quantizing magnetic field
    Asam, M. T.
    Shah, H. A.
    Masood, W.
    Bukhari, S. A.
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [27] Exact solutions and soliton structures of (2+1) -dimensional Zakharov-Kuznetsov equation
    Yang Zheng
    Ma Song-Hua
    Fang Jian-Ping
    ACTA PHYSICA SINICA, 2011, 60 (04)
  • [28] Soliton solutions and interactions of the Zakharov-Kuznetsov equation in the electron-positron-ion plasmas
    Qi-Xing Qu
    Bo Tian
    Wen-Jun Liu
    Kun Sun
    Pan Wang
    Yan Jiang
    Bo Qin
    The European Physical Journal D, 2011, 61 : 709 - 715
  • [29] Integrability and the multi-soliton interactions of non-autonomous Zakharov-Kuznetsov equation
    Roy, Subrata
    Raut, Santanu
    Kairi, Rishi Raj
    Chatterjee, Prasanta
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (05):
  • [30] New exact solitary wave and multiple soliton solutions of quantum Zakharov-Kuznetsov equation
    Zhang, Ben-gong
    Liu, Zheng-rong
    Xiao, Qing
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (01) : 392 - 402