The new hyperspectral satellite prisma: Imagery for forest types discrimination

被引:0
|
作者
Vangi, Elia [1 ,2 ]
D’amico, Giovanni [1 ]
Francini, Saverio [1 ,2 ,3 ]
Giannetti, Francesca [1 ,4 ]
Lasserre, Bruno [2 ]
Marchetti, Marco [2 ]
Chirici, Gherardo [1 ,4 ,5 ]
机构
[1] Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Firenze,50145, Italy
[2] Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Campobasso,86100, Italy
[3] Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia, Viterbo,01100, Italy
[4] Laboratorio Congiunto ForTech, Università degli Studi di Firenze, Firenze,50145, Italy
[5] Research Unit COPERNICUS, Università degli Studi di Firenze, Firenze,50145, Italy
来源
Sensors (Switzerland) | 2021年 / 21卷 / 04期
关键词
Terminology;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1 / 19
相关论文
共 50 条
  • [41] Forest Tree species Classification Based on Airborne Hyperspectral Imagery
    Dian, Yuanyong
    Li, Zengyuan
    Pang, Yong
    MIPPR 2013: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2013, 8921
  • [42] TO WHAT EXTENT ARE VEGETATION TYPES VISIBLE IN SATELLITE IMAGERY
    KALLIOLA, R
    SYRJANEN, K
    ANNALES BOTANICI FENNICI, 1991, 28 (01) : 45 - 57
  • [43] Progressive Discrimination: An Automatic Method for Mapping Individual Targets in Hyperspectral Imagery
    McGwire, Kenneth C.
    Minor, Timothy B.
    Schultz, Bradley W.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (07): : 2674 - 2685
  • [44] A novel endmember extraction and discrimination algorithm for target detection in hyperspectral imagery
    He, Yuanlei
    Liu, Daizhi
    Yi, Shihua
    JOURNAL OF OPTICS, 2011, 13 (08)
  • [45] GEOLOGICAL MAPPING USING MINERAL ABSORPTION FEATURE-GUIDED BAND-RATIOS APPLIED TO PRISMA SATELLITE HYPERSPECTRAL LEVEL 2D IMAGERY
    Laukamp, Carsten
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5981 - 5984
  • [46] SATELLITE IMAGERY FOR SURVEYS OF FOREST DAMAGES - WHERE ARE THE PROBLEMS
    KENNEWEG, H
    FORSTER, B
    RUNKEL, M
    WINTER, R
    ALLGEMEINE FORST UND JAGDZEITUNG, 1989, 160 (04): : 73 - 76
  • [47] IMPROVING HYPERSPECTRAL DATA CLASSIFICATION OF SATELLITE IMAGERY BY USING A SPARSE BASED NEW MODEL WITH LEARNING DICTIONARY
    Zhang, Chunmei
    Hao, Xiaoting
    Bai, Jing
    Dai, Mo
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [48] Assessment of water quality parameters in Muthupet estuary using hyperspectral PRISMA satellite and multispectral images
    T. S. Rahul
    J. Brema
    Environmental Monitoring and Assessment, 2023, 195
  • [49] Assessment of water quality parameters in Muthupet estuary using hyperspectral PRISMA satellite and multispectral images
    Rahul, T. S.
    Brema, J.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (07)
  • [50] Wildfire Detection Using Convolutional Neural Networks and PRISMA Hyperspectral Imagery: A Spatial-Spectral Analysis
    Spiller, Dario
    Carbone, Andrea
    Amici, Stefania
    Thangavel, Kathiravan
    Sabatini, Roberto
    Laneve, Giovanni
    REMOTE SENSING, 2023, 15 (19)