Maximizing thermal response in latent heat thermal energy storage systems: A comprehensive study of wavy fin configuration and distribution

被引:0
|
作者
Benaissa, Mhamed [1 ]
Aljibori, Hakim S. Sultan [2 ]
Abed, Azher M. [3 ]
Mahdi, Jasim M. [4 ]
Mohammed, Hayder I. [5 ]
Younis, Obai [6 ,7 ]
Talebizadehsardari, Pouyan [8 ]
Ben Khedher, Nidhal [9 ]
机构
[1] Univ Hail, Chem Engn Dept, POB 2440, Hail 81441, Saudi Arabia
[2] Univ Warith Al Anbiyaa, Coll Engn, Karbala 56001, Iraq
[3] Al Mustaqbal Univ, Air Conditioning & Refrigerat Tech Engn Dept, Babylon, Iraq
[4] Univ Baghdad, Dept Energy Engn, Baghdad 10071, Iraq
[5] Univ Garmian, Coll Educ, Dept Phys, Kalar 46021, Kurdistan, Iraq
[6] Prince Sattam Bin Abdulaziz Univ, Coll Engn Wadi Alddwasir, Dept Mech Engn, Al Kharj, Saudi Arabia
[7] Univ Khartoum, Fac Engn, Dept Mech Engn, Khartoum, Sudan
[8] Univ Nottingham, Power Elect Machines & Control PEMC Res Inst, Nottingham, England
[9] Univ Hail, Dept Mech Engn, Hail 81451, Saudi Arabia
关键词
Thermal energy storage; Wavy fins; Melting; Solidification; Heat transfer enhancement; Phase change materials; PHASE-CHANGE-MATERIALS; TRIPLEX-TUBE; ENHANCEMENT; PCM;
D O I
10.1016/j.icheatmasstransfer.2024.108172
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study explores the augmentation of melting and solidification of phase change materials (PCMs) in thermal energy storage (TES) systems through strategic implementation of wavy fins. Employing computational fluid dynamics simulations, the study have analyzed the impacts of fin number, thickness, and placement on PCM phase change dynamics. The key findings reveal that the optimal wavy fin configuration (60 degrees angled fins) achieved a 464 % increase in melting rate and 83 % decrease in melting time compared to the no-fin case. Increasing fin number from 3 to 5 improved the melting rate by 173.5 % and reduced melting time by 63.7 %. Shorter, thicker fins (0.5x wavelength) outperformed standard length fins by 5.5 % in terms of melting rate. For solidification, the optimal wavy fin design achieved 100 % solidification within 10,000 s, while the no-fin case reached only 93 % solidification. These results demonstrate that strategic implementation of wavy fins can significantly enhance both melting and solidification processes in PCM thermal storage, leading to substantial improvements in overall system efficiency and energy management capabilities.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Thermal and fluid characteristics of a latent heat thermal energy storage unit
    Yang, Xiaohu
    Li, Yang
    Lu, Zhao
    Zhang, Lianying
    Zhang, Qunli
    Jin, Liwen
    CLEAN ENERGY FOR CLEAN CITY: CUE 2016 - APPLIED ENERGY SYMPOSIUM AND FORUM: LOW-CARBON CITIES AND URBAN ENERGY SYSTEMS, 2016, 104 : 425 - 430
  • [32] A comparison study of different latent thermal energy storage roles in heating systems with heat pump
    Torbarina, Fran
    Lenic, Kristian
    Trp, Anica
    Wolf, Igor
    PROCEEDINGS OF THE INTERNATIONAL RENEWABLE ENERGY STORAGE AND SYSTEMS CONFERENCE, IRES 2023, 2024, 32 : 195 - 204
  • [33] Improved Performance of Latent Heat Energy Storage Systems in Response to Utilization of High Thermal Conductivity Fins
    Ye, Wenwen
    Jamshideasli, Dourna
    Khodadadi, Jay M. M.
    ENERGIES, 2023, 16 (03)
  • [34] Bionic study on latent heat thermal storage
    Zhang, Chengbin
    Huang, Yongping
    Chen, Yongping
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 183
  • [35] A New Methodology for Designing and Assessing Latent Heat Thermal Energy Storage Systems
    Liu, Ming
    Riahi, Soheila
    Jacob, Rhys
    Belusko, Martin
    Bruno, Frank
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2019), 2020, 2303
  • [36] Review of PCM charging in latent heat thermal energy storage systems with fins
    Al-Salami, Hayder A.
    Dhaidan, Nabeel S.
    Abbas, Hawraa H.
    Al-Mousawi, Fadhel N.
    Homod, Raad Z.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 51
  • [37] Study on thermal performance improvement technology of latent heat thermal energy storage for building heating
    Lu, Shilei
    Lin, Quanyi
    Liu, Yi
    Yue, Lu
    Wang, Ran
    APPLIED ENERGY, 2022, 323
  • [38] Investigation of a latent heat thermal energy storage system
    Morcos, V.H., 1600, (07): : 2 - 3
  • [39] Latent heat thermal storage (LHTS) for energy sustainability
    Anisur, M.R.
    Kibria, M.A.
    Mahfuz, M.H.
    Metselaar, I.H.S.C.
    Saidur, R.
    Green Energy and Technology, 2015, 201 : 245 - 263
  • [40] Convective Effects in a Latent Heat Thermal Energy Storage
    Fornarelli, Francesco
    Camporeale, Sergio Mario
    Fortunato, Bernardo
    HEAT TRANSFER ENGINEERING, 2021, 42 (01) : 1 - 22