Graph Convolutional Network With Connectivity Uncertainty for EEG-Based Emotion Recognition

被引:0
|
作者
Gao H. [1 ]
Wang X. [2 ]
Chen Z. [3 ]
Wu M. [3 ]
Cai Z. [1 ]
Zhao L. [1 ]
Li J. [1 ]
Liu C. [1 ]
机构
[1] State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing
[2] Institute of High Performance Computing, A*STAR
关键词
Brain modeling; Connectivity Uncertainty; Convolution; EEG; Electroencephalography; Emotion recognition; Emotion Recognition; Feature extraction; Graph Neural Network; Noise measurement; Uncertainty;
D O I
10.1109/JBHI.2024.3416944
中图分类号
学科分类号
摘要
Automatic emotion recognition based on multichannel Electroencephalography (EEG) holds great potential in advancing human-computer interaction. However, several significant challenges persist in existing research on algorithmic emotion recognition. These challenges include the need for a robust model to effectively learn discriminative node attributes over long paths, the exploration of ambiguous topological information in EEG channels and effective frequency bands, and the mapping between intrinsic data qualities and provided labels. To address these challenges, this study introduces the distribution-based uncertainty method to represent spatial dependencies and temporal-spectral relativeness in EEG signals based on Graph Convolutional Network (GCN) architecture that adaptively assigns weights to functional aggregate node features, enabling effective long-path capturing while mitigating over-smoothing phenomena. Moreover, the graph mixup technique is employed to enhance latent connected edges and mitigate noisy label issues. Furthermore, we integrate the uncertainty learning method with deep GCN weights in a one-way learning fashion, termed Connectivity Uncertainty GCN (CU-GCN). We evaluate our approach on two widely used datasets, namely SEED and SEEDIV, for emotion recognition tasks. The experimental results demonstrate the superiority of our methodology over previous methods, yielding positive and significant improvements. Ablation studies confirm the substantial contributions of each component to the overall performance. IEEE
引用
收藏
页码:1 / 12
页数:11
相关论文
共 50 条
  • [41] EEG-based emotion recognition with cascaded convolutional recurrent neural networks
    Meng, Ming
    Zhang, Yu
    Ma, Yuliang
    Gao, Yunyuan
    Kong, Wanzeng
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 783 - 795
  • [42] EEG-based emotion recognition with cascaded convolutional recurrent neural networks
    Ming Meng
    Yu Zhang
    Yuliang Ma
    Yunyuan Gao
    Wanzeng Kong
    Pattern Analysis and Applications, 2023, 26 : 783 - 795
  • [43] EEG-based emotion recognition using random Convolutional Neural Networks
    Cheng, Wen Xin
    Gao, Ruobin
    Suganthan, P. N.
    Yuen, Kum Fai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [44] EEG-Based Emotion Recognition Using Regularized Graph Neural Networks
    Zhong, Peixiang
    Wang, Di
    Miao, Chunyan
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) : 1290 - 1301
  • [45] Enhanced deep capsule network for EEG-based emotion recognition
    Cizmeci, Huseyin
    Ozcan, Caner
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (02) : 463 - 469
  • [46] EEG-based Emotion Recognition Using Domain Adaptation Network
    Jin, Yi-Ming
    Luo, Yu-Dong
    Zheng, Wei-Long
    Lu, Bao-Liang
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2017, : 222 - 225
  • [47] Enhanced deep capsule network for EEG-based emotion recognition
    Huseyin Cizmeci
    Caner Ozcan
    Signal, Image and Video Processing, 2023, 17 : 463 - 469
  • [48] PNN for EEG-based Emotion Recognition
    Zhang, Jianhai
    Chen, Ming
    Hu, Sanqing
    Cao, Yu
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 2319 - 2323
  • [49] EEG-based Emotion Word Recognition
    Dong, Weiwei
    Wang, Panpan
    Zhang, Yazhou
    Wang, Tianshu
    Niu, Jiabin
    Zhang, Shengnan
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON ADVANCED CONTROL, AUTOMATION AND ARTIFICIAL INTELLIGENCE (ACAAI 2018), 2018, 155 : 121 - 124
  • [50] Emotion recognition from EEG-based relative power spectral topography using convolutional neural network
    Rahman, Md. Asadur
    Anjum, Anika
    Milu, Md. Mahmudul Haque
    Khanam, Farzana
    Uddin, Mohammad Shorif
    Mollah, Nurunnabi
    ARRAY, 2021, 11