Cross-Domain Transfer Hashing for Efficient Cross-Modal Retrieval

被引:4
|
作者
Li, Fengling [1 ]
Wang, Bowen [2 ]
Zhu, Lei [3 ]
Li, Jingjing [4 ]
Zhang, Zheng [5 ]
Chang, Xiaojun [1 ]
机构
[1] Univ Technol Sydney, Australian Artificial Intelligence Inst, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[2] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
[3] Tongji Univ, Sch Elect & Informat Engn, Shanghai 201804, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[5] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Correlation; Training; Adaptation models; Codes; Circuits and systems; Optimization; Cross-modal hashing; cross-domain transfer; dual-pronged approach; weakly-supervised; ROBUST;
D O I
10.1109/TCSVT.2024.3374791
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unsupervised cross-modal hashing presents significant advantages in heterogeneous modality retrieval, offering label scalability, high retrieval efficiency, and low storage costs. However, the lack of explicit semantic supervision in this process results in a noticeable semantic deficit, impacting retrieval performance. In this paper, we address this challenge with a dual-pronged approach: Cross-Domain Transfer Hashing (CDTH), a lightweight weakly-supervised cross-modal hashing model. Our method leverages a semantically rich auxiliary domain to augment the target unsupervised cross-modal hash learning process. Simultaneously, we design a lightweight target cross-modal hashing network to reduce semantic requirements, lessening the burden of parameter optimization. Within the auxiliary domain, we perform direct semantic transfer with hashing network parameter transfer and indirect correlation semantic transfer by constructing an auxiliary semantic correlation graph with the identified cross-domain semantic consistent samples. In the target domain, we generate pseudo-labels using CLIP and establish a target weak semantic correlation graph. These two graphs collaborate to bolster the target cross-modal hashing training process. Extensive experiments on three publicly available datasets affirm the superiority of our approach in both retrieval accuracy and training efficiency. The source code for our method is accessible at: https://github.com/WangBowen7/CDTH.
引用
收藏
页码:9664 / 9677
页数:14
相关论文
共 50 条
  • [41] Supervised Hierarchical Deep Hashing for Cross-Modal Retrieval
    Zhan, Yu-Wei
    Luo, Xin
    Wang, Yongxin
    Xu, Xin-Shun
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3386 - 3394
  • [42] Collaborative Subspace Graph Hashing for Cross-modal Retrieval
    Zhang, Xiang
    Dong, Guohua
    Du, Yimo
    Wu, Chengkun
    Luo, Zhigang
    Yang, Canqun
    ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 213 - 221
  • [43] SCH: Symmetric Consistent Hashing for cross-modal retrieval
    Ni, Haomin
    Fang, Xiaozhao
    Kang, Peipei
    Gao, Hongbo
    Zhou, Guoxu
    Xie, Shengli
    SIGNAL PROCESSING, 2024, 215
  • [44] Supervised Matrix Factorization Hashing for Cross-Modal Retrieval
    Tang, Jun
    Wang, Ke
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) : 3157 - 3166
  • [45] Robust Unsupervised Cross-modal Hashing for Multimedia Retrieval
    Cheng, Miaomiao
    Jing, Liping
    Ng, Michael K.
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (03)
  • [46] Discrete matrix factorization hashing for cross-modal retrieval
    Xiaozhao Fang
    Zhihu Liu
    Na Han
    Lin Jiang
    Shaohua Teng
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 3023 - 3036
  • [47] Discrete Fusion Adversarial Hashing for cross-modal retrieval
    Li, Jing
    Yu, En
    Ma, Jianhua
    Chang, Xiaojun
    Zhang, Huaxiang
    Sun, Jiande
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [48] Asymmetric Correlation Quantization Hashing for Cross-Modal Retrieval
    Wang, Lu
    Zareapoor, Masoumeh
    Yang, Jie
    Zheng, Zhonglong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3665 - 3678
  • [49] Discriminative correlation hashing for supervised cross-modal retrieval
    Lu, Xu
    Zhang, Huaxiang
    Sun, Jiande
    Wang, Zhenhua
    Guo, Peilian
    Wan, Wenbo
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 65 : 221 - 230
  • [50] Linear Subspace Ranking Hashing for Cross-Modal Retrieval
    Li, Kai
    Qi, Guo-Jun
    Ye, Jun
    Hua, Kien A.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (09) : 1825 - 1838