Research Progress in Preparation of Perovskite-Type Composite Oxide Catalyst by Template Method

被引:0
|
作者
Chen L. [1 ]
Yu X. [1 ]
Xie G. [1 ,2 ]
Li Y. [2 ]
Zhang W. [1 ]
机构
[1] School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming
[2] Kunming Metallurgical Research Institute Co., Ltd., State Key Laboratory of Pressured Hydrometallurgy Technology for Associated Nonferrous Metal Resources, Kunming
关键词
Catalyst; Mesoporous structure; Perovskite-type composite oxide; Rare earths; Template method;
D O I
10.11785/S1000-4343.20210401
中图分类号
学科分类号
摘要
Perovskite composite oxides have attracted widespread attention in the field of catalysts in recent years due to the particularity-type of their composition and structure, as well as their excellent thermal stability, redox performance, oxygen mobility, and electronic ion conductivity. Applying nanoporous design strategies to perovskite-type oxides can bring new and excellent performance in various applications. The template method is mainly used to prepare porous metal oxide materials. This mini review aims at summarizing the structural characteristics of perovskite-type composite oxides and the basic principles and methods of preparing it using hard template, soft template, biological template, and other template methods. This papere discussed the advantages and disadvantages of various template agents, briefly introduced several application fields and the future research direction of the perovskite-type composite oxide catalysts. © 2021, Editorial Office of Journal of the Chinese Society of Rare Earths. All right reserved.
引用
收藏
页码:531 / 542
页数:11
相关论文
共 77 条
  • [11] Xu J J, Xu D, Wang Z L, Wang H G, Zhang L L, Zhang X B., Synthesis of perovskite-based porous La<sub>0.75</sub>Sr<sub>0.25</sub>MnO<sub>3</sub> nanotubes as a highly efficient electrocatalyst for rechargeable lithium oxygen batteries, Angew. Chem. Int. Ed, 52, 14, (2013)
  • [12] Jin C, Cao X, Zhang L, Zhang C, Yang R Z., Preparation and electrochemical properties of urchin-like La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub> perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction, J. Power Sources, 241, 1, (2013)
  • [13] Jin C, Cao X, Lu F, Yang Z R, Yang R Z., Electrochemical study of Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3</sub> perovskite as bifunctional catalyst in alkaline media, Int. J. Hydrogen Energy, 38, 25, (2013)
  • [14] Zhang-Steenwinkel Y, van der Zande L M, Castricum H L, Bliek A., Step response and transient isotopic labelling studies into the mechanism of CO oxidation over La<sub>0.8</sub>Ce<sub>0.2</sub>MnO<sub>3</sub> perovskite, Appl. Catal. B, Environmental, 54, 2, (2004)
  • [15] Chen J H, Shen M Q, Wang X Q, Wang J, Su Y G, Zhao Z., Catalytic performance of NO oxidation over LaMeO<sub>3</sub> (Me=Mn, Fe, Co) perovskite prepared by the sol-gel method, Catal. Commun, 37, (2013)
  • [16] Kim H, Lim H D, Kim J, Kang K., Graphene for advanced Li/S and Li/air batteries, J. Mater. Chem. A, 2, 1, (2014)
  • [17] Xia H R, Sun W T, Peng L M., Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries, Chem. Commun, 51, 72, (2015)
  • [18] Kresge C T, Leonowicz M E, Roth W J J, Vartuli J C, Beck J S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, 6397, (1992)
  • [19] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279, 5350, (1998)
  • [20] Corma A., From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev, 97, 6, (1997)