MSF2Net: multi-stage feature fusion network for real-time semantic segmentation in road scenes

被引:0
|
作者
Zhang, Wenrui [1 ]
Peng, Zongju [1 ]
Huang, Lian [1 ]
Chen, Fen [1 ]
Tan, Honglin [1 ]
机构
[1] Chongqing University of Technology, School of Electrical and Electronic Engineering, Chongqing, China
关键词
Semantic Segmentation;
D O I
10.1117/1.JEI.33.5.053020
中图分类号
学科分类号
摘要
Semantic segmentation for road scenes aims to predict specific categories for each pixel in road images, playing a crucial role in various applications such as autonomous driving, scene recognition, and robotics. However, existing semantic segmentation methods face the challenge of maintaining competitive segmentation accuracy while achieving real-time inference speed. To address this, we introduce the multi-stage feature fusion network (MSF2Net) for real-time semantic segmentation of road scenes, achieving a balance between speed and accuracy. First, we develop a lightweight dilate symmetric interaction module (DSIM) to extract rich local and contextual information from images. Next, we enhance the spatial and semantic information of shallow and deep features by stacking DSIMs with different numbers and dilation rates, respectively. Finally, the position attention module supplements the global information of the image. Subsequently, a feature fusion module is utilized to integrate shallow, deep, and global features, thereby achieving real-time semantic segmentation through multi-stage feature fusion. Experimental results on multiple benchmark datasets demonstrate that MSF2Net achieves a good balance between segmentation performance and inference speed. © 2024 SPIE and IS&T.
引用
收藏
相关论文
共 50 条
  • [41] Real-Time Semantic Segmentation Algorithm Based on Feature Fusion Technology
    Cai Yu
    Huang Xuegong
    Zhian, Zhang
    Zhu Xinnian
    Ma Xiang
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (02)
  • [42] FBRNet: a feature fusion and border refinement network for real-time semantic segmentation (vol 27, 2, 2024)
    Qu, Shaojun
    Wang, Zhuo
    Wu, Jie
    Feng, Yuewen
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [43] MSF-Net: A Lightweight Multi-Scale Feature Fusion Network for Skin Lesion Segmentation
    Shao, Dangguo
    Ren, Lifan
    Ma, Lei
    BIOMEDICINES, 2023, 11 (06)
  • [44] ASFNet: Adaptive multiscale segmentation fusion network for real-time semantic segmentation
    Zha, Hengfeng
    Liu, Rui
    Yang, Xin
    Zhou, Dongsheng
    Zhang, Qiang
    Wei, Xiaopeng
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2021, 32 (3-4)
  • [45] DRMNet: more efficient bilateral networks for real-time semantic segmentation of road scenes
    Zhang, Wenming
    Zhang, Shaotong
    Li, Yaqian
    Li, Haibin
    Song, Tao
    Journal of Real-Time Image Processing, 2024, 21 (06)
  • [46] Joint pyramid attention network for real-time semantic segmentation of urban scenes
    Xuegang Hu
    Liyuan Jing
    Uroosa Sehar
    Applied Intelligence, 2022, 52 : 580 - 594
  • [47] Joint pyramid attention network for real-time semantic segmentation of urban scenes
    Hu, Xuegang
    Jing, Liyuan
    Sehar, Uroosa
    APPLIED INTELLIGENCE, 2022, 52 (01) : 580 - 594
  • [48] Real-time Semantic Segmentation for Road Scene
    Zhang, Xuetao
    Chen, Zhenxue
    Lu, Dan
    Li, Xianming
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (IEEE ICARM), 2018, : 19 - 23
  • [49] BFBE-Net: deep bilateral fusion and bilateral embedded network for real-time semantic segmentation
    Hou, Zhiqiang
    Cheng, Minjie
    Dai, Nan
    Ma, Sugang
    Yang, Xiaobao
    Fan, Jiulun
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (04)
  • [50] Real-time road scene segmentation based on knowledge distillation Real-time road semantic segmentation
    Li, Wenting
    Yang, Huicheng
    Hu, Yaocong
    Lin, Yuanyuan
    Shuai, Zhen
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 429 - 433