Particulate-reinforced AlSi10Mg matrix composites fabricated by laser powder bed fusion: A review

被引:0
|
作者
Yi, Denghao [1 ,2 ]
Li, Tianci [1 ,2 ]
Zhang, Dongyun [1 ,2 ]
Liu, Zhiyuan [1 ,2 ]
Wei, Yaoyu [1 ,2 ]
Li, Xiaofeng [3 ]
机构
[1] Beijing Univ Technol, Inst Laser Engn, Fac Mat & Mfg, Pingleyuan 100, Beijing 100124, Peoples R China
[2] Beijing Engn Res Ctr 3D Printing Digital Med Hlth, Beijing, Peoples R China
[3] North Univ China, Sch Mat Sci & Engn, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser powder bed fusion (LPBF); Particle-reinforced aluminum matrix; composites (P-AMCs); Microstructure; Strength; Ductility; MECHANICAL-PROPERTIES; SPRAY DEPOSITION; MICROSTRUCTURE; ALLOY; STRENGTH; NANOCOMPOSITES; EVOLUTION; PERFORMANCE; PARTICLES;
D O I
10.1016/j.jmapro.2024.11.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The high-performance solid-free forming process of laser powder bed fusion (LPBF) technology allows the production of challenging pure metals, various alloys, and metal matrix composites. Applying LPBF technology to metal matrix composites, especially particle-reinforced aluminum matrix composites (P-AMCs), has broad application prospects in high-performance lightweight materials - multi-functional structures - performance integration. Due to its good formability, AlSi10Mg alloy can be used as an ideal material for LPBF-manufactured aluminum (Al) matrix composites. With the addition of the second phase, the LPBF-manufactured AlSi10Mg composite exhibits improved microstructure and optimized mechanical properties, which greatly enriches the composite material library in aerospace and automotive industries and has important research significance. This review article aims to summarize the recent progress in the powder mixing process, the characterization of interface and microstructure, strengthening and toughening mechanism, and try to establish the internal relationship between microstructure, strength, and ductility of deposited materials. Subsequently, based on the existing analysis and discussion, the development of LPBF-manufactured high-strength Al alloy and functional Al matrix materials is also highlighted.
引用
收藏
页码:912 / 934
页数:23
相关论文
共 50 条
  • [31] A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting
    Wang, Pei
    Eckert, Jurgen
    Prashanth, Konda-gokuldoss
    Wu, Ming-wei
    Kaban, Ivan
    Xi, Li-xia
    Scudino, Sergio
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2020, 30 (08) : 2001 - 2034
  • [32] Effect of SiC particle size on densification behavior and mechanical properties of SiCp/AlSi10Mg composites fabricated by laser powder bed fusion
    Xue, Gang
    Ke, Linda
    Liao, Hailong
    Chen, Changpeng
    Zhu, Haihong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 845 (845)
  • [33] Effect of heat treatment on microstructure and mechanical properties of AlSi10Mg fabricated using laser powder bed fusion
    Huang, Nancy
    Luo, Qixiang
    Bartles, Dean L.
    Simpson, Timothy W.
    Beese, Allison M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 895
  • [34] Effect of heat treatments on microstructure and mechanical properties of AlSi10Mg alloys fabricated by laser powder bed fusion
    Xiaogang Zhu
    Dafan Du
    Anping Dong
    Qinyao Sun
    Jing Sun
    Lijie Guo
    Baode Sun
    Zhendong Chen
    The International Journal of Advanced Manufacturing Technology, 2023, 127 : 4211 - 4223
  • [35] Microstructure and mechanical properties of Cu-modified AlSi10Mg fabricated by Laser-Powder Bed Fusion
    Garmendia, X.
    Chalker, S.
    Bilton, M.
    Sutcliffe, C. J.
    Chalker, P. R.
    MATERIALIA, 2020, 9
  • [36] Fatigue Improvement of AlSi10Mg Fabricated by Laser-Based Powder Bed Fusion through Heat Treatment
    Sajadi, Felix
    Tiemann, Jan-Marc
    Bandari, Nooshin
    Darabi, Ali Cheloee
    Mola, Javad
    Schmauder, Siegfried
    METALS, 2021, 11 (05)
  • [37] The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion
    Wu, Zhengkai
    Wu, Shengchuan
    Bao, Jianguang
    Qian, Weijian
    Karabal, Suleyman
    Sun, Wei
    Withers, Philip J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 151
  • [38] A multi-scale constitutive model for AlSi10Mg alloy fabricated via laser powder bed fusion
    Lei, Mingqi
    Aditya, Ramesh
    Liu, Lu
    Wu, Mao See
    Wang, Jundong
    Zhou, Kun
    Yao, Yao
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2025, 306
  • [39] Anisotropic dynamic response of AlSi10Mg fabricated via laser powder bed fusion under plate impact
    Zhang, N. B.
    Yang, K.
    Li, Y. C.
    Lin, Z. H.
    Cai, Y.
    Chai, H. W.
    Xie, H. L.
    Lu, L.
    Luo, S. N.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 314
  • [40] Effect of heat treatments on microstructure and mechanical properties of AlSi10Mg alloys fabricated by laser powder bed fusion
    Zhu, Xiaogang
    Du, Dafan
    Dong, Anping
    Sun, Qinyao
    Sun, Jing
    Guo, Lijie
    Sun, Baode
    Chen, Zhendong
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (9-10): : 4211 - 4223