ThermoPore: Predicting part porosity based on thermal images using deep learning

被引:0
|
作者
Pak, Peter [1 ]
Ogoke, Francis [1 ]
Polonsky, Andrew [2 ]
Garland, Anthony [2 ]
Bolintineanu, Dan S. [2 ]
Moser, Dan R. [2 ]
Arnhart, Mary [2 ]
Madison, Jonathan [2 ]
Ivanoff, Thomas [2 ]
Mitchell, John [2 ]
Jared, Bradley [3 ]
Salzbrenner, Brad [2 ]
Heiden, Michael J. [2 ]
Barati Farimani, Amir [1 ,4 ]
机构
[1] Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh,PA, United States
[2] Sandia National Laboratories, United States
[3] The University of Tennessee Knoxville, United States
[4] Machine Learning Department, Carnegie Mellon University, Pittsburgh,PA, United States
来源
Additive Manufacturing | 2024年 / 95卷
关键词
Compendex;
D O I
10.1016/j.addma.2024.104503
中图分类号
学科分类号
摘要
Thermography (imaging)
引用
收藏
相关论文
共 50 条
  • [21] Deep Learning-Based Plant Classification Using Nonaligned Thermal and Visible Light Images
    Batchuluun, Ganbayar
    Nam, Se Hyun
    Park, Kang Ryoung
    MATHEMATICS, 2022, 10 (21)
  • [22] Deep Learning for Human Part Discovery in Images
    Oliveira, Gabriel L.
    Valada, Abhinav
    Bollen, Claas
    Burgard, Wolfram
    Brox, Thomas
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1634 - 1641
  • [23] Predicting Later Time Frame Images in Dynamic PET Using Deep Learning
    Mokri, M.
    Safari, M.
    Dasilva, J.
    Kaviani, S.
    Archambault, L.
    Carrier, J.
    MEDICAL PHYSICS, 2022, 49 (06) : E658 - E658
  • [24] Predicting BRAF and NRAS Mutations Using Deep Learning on Histopathology Images of Melanoma
    Kim, Randie
    Nomikou, Sofia
    Dawood, Zarmeena
    Coudray, Nicolas
    Jour, George
    Moran, Una
    Razavian, Narges
    Osman, Iman
    Tsirigos, Aristotelis
    MODERN PATHOLOGY, 2019, 32
  • [25] Predicting BRAF and NRAS Mutations Using Deep Learning on Histopathology Images of Melanoma
    Kim, Randie
    Nomikou, Sofia
    Dawood, Zarmeena
    Coudray, Nicolas
    Jour, George
    Moran, Una
    Razavian, Narges
    Osman, Iman
    Tsirigos, Aristotelis
    LABORATORY INVESTIGATION, 2019, 99
  • [26] Project Based Learning: Predicting Bitcoin Prices using Deep Learning
    Yogeshwaran, S.
    Kaur, Maninder Jeet
    Maheshwari, Piyush
    PROCEEDINGS OF 2019 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON), 2019, : 1449 - 1454
  • [27] Predicting pharmaceutical powder flow from microscopy images using deep learning
    Wilkinson, Matthew R.
    Pereira Diaz, Laura
    Vassileiou, Antony D.
    Armstrong, John A.
    Brown, Cameron J.
    Castro-Dominguez, Bernardo
    Florence, Alastair J.
    DIGITAL DISCOVERY, 2023, 2 (02): : 459 - 470
  • [28] Predicting refractive error from retinal fundus images using deep learning
    Poplin, Ryan
    Varadarajan, Avinash
    Blumer, Katy
    Angermueller, Christof
    Ledsam, Joe
    Chopra, Reena
    Keane, Pearse
    Corrado, Greg
    Peng, Lily
    Webster, Dale
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [29] Predicting Discus Hernia from MRI Images Using Deep Transfer Learning
    Geroski, Tijana
    Rankovic, Vesna
    Milovanovic, Vladimir
    Kovacevic, Vojin
    Rasulic, Lukas
    Filipovic, Nenad
    APPLIED ARTIFICIAL INTELLIGENCE 2: MEDICINE, BIOLOGY, CHEMISTRY, FINANCIAL, GAMES, ENGINEERING, SICAAI 2023, 2024, 999 : 90 - 98
  • [30] Deep Learning Semantic Segmentation of Feet Using Infrared Thermal Images
    Mejia-Zuluaga, Rafael
    Carlos Aguirre-Arango, Juan
    Collazos-Huertas, Diego
    Daza-Castillo, Jessica
    Valencia-Marulanda, Nestor
    Calderon-Marulanda, Mauricio
    Aguirre-Ospina, Oscar
    Alvarez-Meza, Andres
    Castellanos-Dominguez, German
    ADVANCES IN ARTIFICIAL INTELLIGENCE-IBERAMIA 2022, 2022, 13788 : 342 - 352