Spectral clustering based on the local similarity measure of shared neighbors

被引:0
|
作者
Cao, Zongqi [1 ]
Chen, Hongjia [1 ]
Wang, Xiang [1 ]
机构
[1] Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, China
来源
ETRI Journal | 2022年 / 44卷 / 05期
基金
中国国家自然科学基金;
关键词
Clustering algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Spectral clustering has become a typical and efficient clustering method used in a variety of applications. The critical step of spectral clustering is the similarity measurement, which largely determines the performance of the spectral clustering method. In this paper, we propose a novel spectral clustering algorithm based on the local similarity measure of shared neighbors. This similarity measurement exploits the local density information between data points based on the weight of the shared neighbors in a directed (Formula presented.) -nearest neighbor graph with only one parameter (Formula presented.), that is, the number of nearest neighbors. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed algorithm outperforms other existing spectral clustering algorithms in terms of the clustering performance measured via the normalized mutual information, clustering accuracy, and (Formula presented.) -measure. As an example, the proposed method can provide an improvement of 15.82% in the clustering performance for the Soybean dataset. 1225-6463/$ © 2022 ETRI.
引用
收藏
页码:769 / 779
相关论文
共 50 条
  • [1] Spectral clustering based on the local similarity measure of shared neighbors
    Cao, Zongqi
    Chen, Hongjia
    Wang, Xiang
    ETRI JOURNAL, 2022, 44 (05) : 769 - 779
  • [2] Robust Similarity Measure for Spectral Clustering Based on Shared Neighbors
    Ye, Xiucai
    Sakurai, Tetsuya
    ETRI JOURNAL, 2016, 38 (03) : 540 - 550
  • [3] Spectral Clustering Using Robust Similarity Measure Based on Closeness of Shared Nearest Neighbors
    Ye, Xiucai
    Sakurai, Tetsuya
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [4] CLUSTERING USING A SIMILARITY MEASURE BASED ON SHARED NEAR NEIGHBORS
    JARVIS, RA
    PATRICK, EA
    IEEE TRANSACTIONS ON COMPUTERS, 1973, C-22 (11) : 1025 - 1034
  • [5] Improved Spectral Clustering Algorithm Based on Similarity Measure
    Yan, Jun
    Cheng, Debo
    Zong, Ming
    Deng, Zhenyun
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2014, 2014, 8933 : 641 - 654
  • [6] A similarity measure based on subspace distance for spectral clustering
    Naseri, Nadimeh
    Eftekhari, Mahdi
    Saberi-Movahed, Farid
    Radjabalipour, Mehdi
    Belanche, Lluis A.
    NEUROCOMPUTING, 2025, 620
  • [7] An Adaptive Spectral Clustering Algorithm Based on the Importance of Shared Nearest Neighbors
    He, Xiaoqi
    Zhang, Sheng
    Liu, Yangguang
    ALGORITHMS, 2015, 8 (02): : 177 - 189
  • [8] Improved spectral clustering algorithm based on similarity measure
    Cheng, Debo, 1600, Springer Verlag (8933):
  • [9] Fuzzy partition based similarity measure for spectral clustering
    1600, Science and Engineering Research Support Society (09):
  • [10] Spectral clustering with fuzzy similarity measure
    Zhao, Feng
    Liu, Hanqiang
    Jiao, Licheng
    DIGITAL SIGNAL PROCESSING, 2011, 21 (06) : 701 - 709