机构:
MIT, Sloan Sch Management, E62-560, Boston, MA 02139 USA
MIT, Operat Res Ctr, E62-560, Boston, MA 02139 USAMIT, Sloan Sch Management, E62-560, Boston, MA 02139 USA
Bertsimas, Dimitris
[1
,2
]
Koulouras, Angelos Georgios
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Sloan Sch Management, E62-560, Boston, MA 02139 USA
MIT, Operat Res Ctr, E62-560, Boston, MA 02139 USAMIT, Sloan Sch Management, E62-560, Boston, MA 02139 USA
Koulouras, Angelos Georgios
[1
,2
]
Margonis, Georgios Antonios
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Sloan Sch Management, E62-560, Boston, MA 02139 USA
MIT, Operat Res Ctr, E62-560, Boston, MA 02139 USA
Mem Sloan Kettering Canc Ctr, Dept Surg, New York, NY 10065 USAMIT, Sloan Sch Management, E62-560, Boston, MA 02139 USA
Margonis, Georgios Antonios
[1
,2
,3
]
机构:
[1] MIT, Sloan Sch Management, E62-560, Boston, MA 02139 USA
[2] MIT, Operat Res Ctr, E62-560, Boston, MA 02139 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Surg, New York, NY 10065 USA
We propose a novel framework that addresses the deficiencies of Randomized clinical trial data subgroup analysis while it transforms ObservAtional Data to be used as if they were randomized, thus paving the road for precision medicine. Our approach counters the effects of unobserved confounding in observational data through a two-step process that adjusts predicted outcomes under treatment. These adjusted predictions train decision trees, optimizing treatment assignments for patient subgroups based on their characteristics, enabling intuitive treatment recommendations. Implementing this framework on gastrointestinal stromal tumors (GIST) data, including genetic sub-cohorts, showed that our tree recommendations outperformed current guidelines in an external cohort. Furthermore, we extended the application of this framework to RCT data from patients with extremity sarcomas. Despite initial trial indications of universal treatment necessity, our framework identified a subset of patients who may not require treatment. Once again, we successfully validated our recommendations in an external cohort.
机构:
Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
Kavli Fdn, Los Angeles, CA 90095 USAUniv Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA