Short-term air quality prediction using point and interval deep learning systems coupled with multi-factor decomposition and data-driven tree compression

被引:2
|
作者
Che, Jinxing [1 ,3 ]
Hu, Kun [2 ,3 ]
Xia, Wenxin [1 ,3 ]
Xu, Yifan [2 ,3 ]
Li, Yuerong [1 ,3 ]
机构
[1] School of Science, Nanchang Institute of Technology, Jiangxi, Nanchang,330099, China
[2] School of Information Engineering, Nanchang Institute of Technology, Jiangxi, Nanchang,330099, China
[3] Key Laboratory of Engineering Mathematics and Advanced Computing of Nanchang Institute of Technology,Nanchang Institute of Technology, Jiangxi, Nanchang,330099, China
关键词
51;
D O I
10.1016/j.asoc.2024.112191
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Data-Driven Techniques for Short-Term Electricity Price Forecasting through Novel Deep Learning Approaches with Attention Mechanisms
    Laitsos, Vasileios
    Vontzos, Georgios
    Bargiotas, Dimitrios
    Daskalopulu, Aspassia
    Tsoukalas, Lefteri H.
    ENERGIES, 2024, 17 (07)
  • [22] Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model
    Rahim Barzegar
    Mohammad Taghi Aalami
    Jan Adamowski
    Stochastic Environmental Research and Risk Assessment, 2020, 34 : 415 - 433
  • [23] Prediction of Multivariate Air Quality Time Series Data using Long Short-Term Memory Network
    Abu Bakar, Mohd After
    Ariff, Noratiqah Mohd
    Nadzir, Mohd Shahrul Mohd
    Wen, Ong Li
    Suris, Fatin Nur Afiqah
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2022, 18 (01): : 52 - 59
  • [24] PHYSICS-INFORMED DATA-DRIVEN MODEL FOR SHORT-TERM PRECIPITATION PREDICTION USING RADAR-OBSERVED BIG DATA
    Zheng, Shitao
    TakashiMiyamoto
    ShingoShimizu
    RyoheiKato
    KoyuruIwanami
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4623 - 4626
  • [25] A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data
    Bao, Jie
    Liu, Pan
    Ukkusuri, Satish V.
    ACCIDENT ANALYSIS AND PREVENTION, 2019, 122 : 239 - 254
  • [26] Data-driven multi-step robust prediction of TBM attitude using a hybrid deep learning approach
    Wang, Kunyu
    Wu, Xianguo
    Zhang, Limao
    Song, Xieqing
    ADVANCED ENGINEERING INFORMATICS, 2023, 55
  • [27] Forecasting very short-term wind power generation using deep learning, optimization and data decomposition techniques
    Hossain, Md Alamgir
    Gray, Evan MacA
    Islam, Md Rabiul
    Chakrabortty, Ripon K.
    Pota, Hemanshu R.
    2021 24TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2021), 2021, : 323 - 327
  • [28] Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model
    Barzegar, Rahim
    Aalami, Mohammad Taghi
    Adamowski, Jan
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (02) : 415 - 433
  • [29] Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network
    Wu, Jun
    Hu, Kui
    Cheng, Yiwei
    Zhu, Haiping
    Shao, Xinyu
    Wang, Yuanhang
    ISA TRANSACTIONS, 2020, 97 : 241 - 250
  • [30] Short-term wind speed interval prediction using improved quality-driven loss based gated multi-scale convolutional sequence model
    Saeed, Adnan
    Li, Chaoshun
    Gan, Zhenhao
    ENERGY, 2024, 300