An Adaptive Compression and Communication Framework for Wireless Federated Learning

被引:0
|
作者
Yang Y. [1 ]
Dang S. [2 ]
Zhang Z. [1 ]
机构
[1] School of Computer, Electronics and Information, Guangxi University
[2] School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol
关键词
Communication system security; communication-computing trade-off; Computational modeling; Convergence; distributed machine learning; Federated learning; joint optimization; model compression; Optimization; Quantization (signal); Training; Vectors;
D O I
10.1109/TMC.2024.3382776
中图分类号
学科分类号
摘要
Federated learning (FL) is a distributed privacy-preserving paradigm of machine learning that enables efficient and secure model training through the collaboration of multiple clients. However, imperfect channel estimation and resource constraints of edge devices severely hinder the convergence of typical wireless FL, while the trade-off between communications and computation still lacks in-depth exploration. These factors lead to inefficient communications and hinder the full potential of FL from being unleashed. In this regard, we formulate a joint optimization problem of communications and learning in wireless networks subject to dynamic channel variations. For addressing the formulated problem, we propose an integrated adaptive <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-ary compression and resource management framework (ANC) that is capable of adjusting the selection of edge devices and compression schemes, and allocates the optimal resource blocks and transmit power to each participating device, which effectively improves the energy efficiency and scalability of FL in resource-constrained environments. Furthermore, an upper bound on the expected global convergence rate is derived in this paper to quantify the impacts of transmitted data volume and wireless propagation on the convergence of FL. Simulation results demonstrate that the proposed adaptive framework achieves much faster convergence while maintaining considerably low communication overhead. IEEE
引用
收藏
页码:1 / 18
页数:17
相关论文
共 50 条
  • [21] ClusterGrad: Adaptive Gradient Compression by Clustering in Federated Learning
    Cui, Laizhong
    Su, Xiaoxin
    Zhou, Yipeng
    Zhang, Lei
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [22] Adaptive Federated Dropout: Improving Communication Efficiency and Generalization for Federated Learning
    Bouacida, Nader
    Hou, Jiahui
    Zang, Hui
    Liu, Xin
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [23] Adaptive image compression for wireless multimedia communication
    Taylor, CN
    Dey, S
    2001 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-10, CONFERENCE RECORD, 2001, : 1925 - 1929
  • [24] Training Efficiency of Federated Learning: A Wireless Communication Perspective
    Yang, Shunan
    Liu, Yuan
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 922 - 926
  • [25] Asynchronous Federated Learning over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Wang, Jue
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [26] Wireless Federated Learning with Limited Communication and Differential Privacy
    Sonee, Amir
    Rini, Stefano
    Huang, Yu-Chih
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [27] Asynchronous Federated Learning Over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Tian, Yuqing
    Yang, Qianqian
    Shan, Hangguan
    Wang, Wei
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6961 - 6978
  • [28] A Joint Communication and Learning Framework for Hierarchical Split Federated Learning
    Khan, Latif U.
    Guizani, Mohsen
    Al-Fuqaha, Ala
    Hong, Choong Seon
    Niyato, Dusit
    Han, Zhu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (01) : 268 - 282
  • [29] Adaptive Model Pruning for Hierarchical Wireless Federated Learning
    Liu, Xiaonan
    Wang, Shiqiang
    Deng, Yansha
    Nallanathan, Arumugam
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [30] Adaptive Transceiver Design for Wireless Hierarchical Federated Learning
    Zhou, Fangtong
    Chen, Xu
    Shan, Hangguan
    Zhou, Yong
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,