Communication-Efficient and Privacy-Preserving Federated Learning via Joint Knowledge Distillation and Differential Privacy in Bandwidth-Constrained Networks

被引:0
|
作者
Gad, Gad [1 ]
Gad, Eyad [1 ]
Fadlullah, Zubair Md [1 ]
Fouda, Mostafa M. [2 ,3 ]
Kato, Nei [4 ]
机构
[1] Western University, Department of Computer Science, London,ON,N6G 2V4, Canada
[2] Idaho State University, Department of Electrical and Computer Engineering, Pocatello,ID,83209, United States
[3] Center for Advanced Energy Studies (CAES), Idaho Falls,ID,83401, United States
[4] Tohoku University, Graduate School of Information Sciences, Sendai,980-8577, Japan
关键词
5G mobile communication systems;
D O I
10.1109/TVT.2024.3423718
中图分类号
学科分类号
摘要
引用
收藏
页码:17586 / 17601
相关论文
共 50 条
  • [31] CLFLDP: Communication-efficient layer clipping federated learning with local differential privacy
    Chen, Shuhong
    Yang, Jiawei
    Wang, Guojun
    Wang, Zijia
    Yin, Haojie
    Feng, Yinglin
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 148
  • [32] Efficient Privacy-Preserving Federated Learning With Unreliable Users
    Li, Yiran
    Li, Hongwei
    Xu, Guowen
    Huang, Xiaoming
    Lu, Rongxing
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11590 - 11603
  • [33] Efficient and privacy-preserving group signature for federated learning
    Kanchan, Sneha
    Jang, Jae Won
    Yoon, Jun Yong
    Choi, Bong Jun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 147 : 93 - 106
  • [34] Efficient and Privacy-Preserving Federated Learning with Irregular Users
    Xu, Jieyu
    Li, Hongwei
    Zeng, Jia
    Hao, Meng
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 534 - 539
  • [35] An efficient privacy-preserving and verifiable scheme for federated learning
    Yang, Xue
    Ma, Minjie
    Tang, Xiaohu
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 238 - 250
  • [36] Complementary Knowledge Distillation for Robust and Privacy-Preserving Model Serving in Vertical Federated Learning
    Gao, Dashan
    Wan, Sheng
    Fan, Lixin
    Yao, Xin
    Yang, Qiang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 18, 2024, : 19832 - 19839
  • [37] A privacy-preserving federated learning framework for blockchain networks
    Abuzied, Youssif
    Ghanem, Mohamed
    Dawoud, Fadi
    Gamal, Habiba
    Soliman, Eslam
    Sharara, Hossam
    Elbatt, Tamer
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 3997 - 4014
  • [38] Privacy-Preserving Federated Learning based on Differential Privacy and Momentum Gradient Descent
    Weng, Shangyin
    Zhang, Lei
    Feng, Daquan
    Feng, Chenyuan
    Wang, Ruiyu
    Klaine, Paulo Valente
    Imran, Muhammad Ali
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [39] Data-Free Knowledge Distillation for Privacy-Preserving Efficient UAV Networks
    Yu, Guyang
    2022 6TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION SCIENCES (ICRAS 2022), 2022, : 52 - 56
  • [40] FedGKD: Federated Graph Knowledge Distillation for privacy-preserving rumor detection
    Zheng, Peng
    Dou, Yong
    Yan, Yeqing
    KNOWLEDGE-BASED SYSTEMS, 2024, 304