Statistical properties of microphase and bubbly phase-separated active fluids

被引:2
|
作者
Fausti, Giordano [1 ,2 ,3 ]
Cates, Michael E. [4 ]
Nardini, Cesare [1 ,5 ]
机构
[1] Univ Paris Saclay, Serv Phys Etat Condense, CEA Saclay, CEA,CNRS, F-91191 Gif Sur Yvette, France
[2] Max Planck Inst Dynam & Selforg MPI DS, D-37077 Gottingen, Germany
[3] Sapienza Univ Roma, Dipartimento Fis, Ple Aldo Moro 2, I-00185 Rome, Italy
[4] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[5] Sorbonne Univ, CNRS, Lab Phys Theor Matiere Condensee, LPTMC, F-75005 Paris, France
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 美国国家科学基金会;
关键词
FLUCTUATIONS; PARTICLES; KINETICS;
D O I
10.1103/PhysRevE.110.L042103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In phase-separated active fluids, the Ostwald process can go into reverse, leading to either microphase separation or bubbly phase separation. We show that the latter is formed of two macroscopic regions that are occupied by the homogeneous fluid and by the microphase separated one. Within the microphase-separated fluid, the relative rate of the Ostwald process, coalescence, and nucleation determines whether the size distribution of mesoscopic domains is narrowly peaked or displays abroad range of sizes before attaining a cutoff independent of system size. Our results are obtained via large-scale simulations of a minimal field theory for active phase separation and reproduced by an effective model in which the degrees of freedom are the locations and sizes of the microphase-separated domains.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Tau Mutants Alter the Rheological Properties of Phase-Separated Tau Condensates
    McDonald, Charles J.
    Wajid, Mahnoor
    Elbaum-Garfinkle, Shana
    FASEB JOURNAL, 2022, 36
  • [42] Characterizing the metabolomes of phase-separated condensates
    Dumelie, Jason G.
    Jaffrey, Samie R.
    NATURE CHEMICAL BIOLOGY, 2024, 20 (03) : 273 - 274
  • [43] Phase-Separated Interpenetrating Polymer Networks
    Lipatov, Yuri S.
    Alekseeva, Tatiana T.
    PHASE-SEPARATED INTERPENETRATING POLYMER NETWORKS, 2007, 208 : 1 - 227
  • [44] STRESS IN LEACHED PHASE-SEPARATED GLASS
    SCHERER, GW
    DREXHAGE, MG
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1985, 68 (08) : 419 - 426
  • [45] Phase-separated droplets swim to their dissolution
    Jambon-Puillet, Etienne
    Testa, Andrea
    Lorenz, Charlotta
    Style, Robert W.
    Rebane, Aleksander A.
    Dufresne, Eric R.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [46] Tunneling magnetoresistance of phase-separated manganites
    Sboychakov, AO
    Rakhmanov, AL
    Kugel', KI
    Kagan, MY
    Brodsky, IV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2002, 95 (04) : 753 - 761
  • [47] Viscosity, mechanical properties and phase-separated morphology of waterborne epoxy asphalt
    Ji, Jie
    Shi, Qingwen
    Zhang, Ran
    Suo, Zhi
    Wang, Jiani
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 334
  • [48] Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process
    Tjhung, Elsen
    Nardini, Cesare
    Cates, Michael E.
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [49] Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments
    Bouchard, Jill J.
    Otero, Joel H.
    Scott, Daniel C.
    Szulc, Elzbieta
    Martin, Erik W.
    Sabri, Nafiseh
    Granata, Daniele
    Marzahn, Melissa R.
    Lindorff-Larsen, Kresten
    Salvatella, Xavier
    Schulman, Brenda A.
    Mittag, Tanja
    MOLECULAR CELL, 2018, 72 (01) : 19 - +
  • [50] Particulate growth in phase-separated polymer blends
    Cavanaugh, TJ
    Nauman, EB
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1998, 36 (12) : 2191 - 2196