Surrogate-assisted optimization under uncertainty for design for remanufacturing considering material price volatility

被引:0
|
作者
Tabassum, Mehnuma [1 ]
De Brabanter, Kris [1 ,2 ]
Kremer, Gul E. [3 ]
机构
[1] Iowa State Univ, Dept Ind & Mfg Syst Engn, 1328 Howe Hall,537 Bissell Rd, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[3] Univ Dayton, Sch Engn, 300 Coll Pk, Dayton, OH 45469 USA
关键词
Design for Remanufacturing (DfRem); Optimization under uncertainty; Surrogate modeling; Reliability-based design optimization (RBDO); Volatility analysis; TOPOLOGY OPTIMIZATION; CARBON FOOTPRINT; DECISION-MAKING; VARIANCE; HETEROSCEDASTICITY; OPPORTUNITIES; CONSUMPTION; GUIDELINES; OPERATIONS; FRAMEWORK;
D O I
10.1016/j.susmat.2024.e01163
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remanufacturing is a well-established end-of-life (EOL) strategy that promises significant savings in energy and carbon emissions. However, the current design practices are not remanufacturing-inclusive, i.e., the majority of products are designed for a single life cycle. As a result, potential products that can sustain multiple life cycles are deprived of additional benefits of being designed for remanufacturing, such as reduced material usage, lower cost, and improved environmental impact. Moreover, the uncertainty in design, material selection, and economics are not considered to produce remanufacturable designs. Accordingly, this research proposes a design for remanufacturing (DfRem) framework that accounts for design uncertainty and material price volatility. The framework systematically explores the design space, performs design optimization under uncertainty, followed by topology optimization to provide additional mass savings, and finally, a price volatility analysis for plausible design material choices. The candidate designs are evaluated based on their design mass, material price volatility, failure mode characteristics, carbon footprint, and embodied energy impacts. The proposed framework's utility is demonstrated via the use of an engine cylinder head case study subjected to thermo-mechanical loads along with fatigue and wear failure. Considering grey cast iron and aluminum alloy as the design material choices, it was found that the cast iron design reduced the initial design mass by 6% as opposed to a 5% decrease for aluminum. On the other hand, about 8% area of the cast iron design failed due to fatigue, compared to 3% for aluminum. We further observed that although the aluminum design provided better mechanical performance than the cast iron design, this material was more expensive and volatile in price.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Surrogate-assisted multi-objective Bayesian optimization for improved rheological design of bioinks
    Rane, Aditya
    Hart, Stephanie
    Ramesh, Srikanthan
    Deep, Akash
    MANUFACTURING LETTERS, 2024, 41 : 1405 - 1414
  • [42] Nozzle design optimization for supersonic wind tunnel by using surrogate-assisted evolutionary algorithms
    Matsunaga, Masanobu
    Fujio, Chihiro
    Ogawa, Hideaki
    Higa, Yoshitaka
    Handa, Taro
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 130
  • [43] Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework
    Moustapha, Maliki
    Sudret, Bruno
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (05) : 2157 - 2176
  • [44] A Novel Surrogate-Assisted Multi-Objective Optimization Algorithm for an Electromagnetic Machine Design
    Lim, Dong-Kuk
    Woo, Dong-Kyun
    Yeo, Han-Kyeol
    Jung, Sang-Yong
    Ro, Jong-Suk
    Jung, Hyun-Kyo
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [45] Optimization for Production/Remanufacturing System with Return Rate Dependent on Price and Quality under Uncertainty
    Gong, Yanxue
    Huang, Dao
    Tian, Yu
    Sun, Shaochao
    Peng, Yigong
    COMPUTER SCIENCE FOR ENVIRONMENTAL ENGINEERING AND ECOINFORMATICS, PT 1, 2011, 158 : 166 - +
  • [46] An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization problems
    Pan, Jeng-Shyang
    Liu, Nengxian
    Chu, Shu-Chuan
    Lai, Taotao
    INFORMATION SCIENCES, 2021, 561 : 304 - 325
  • [47] A New Robust Surrogate-Assisted Multi-Objective Optimization Algorithm for an IPMSM Design
    Lim, Dong-Kuk
    Woo, Dong-Kyun
    Yeo, Han-Kyeol
    Jung, Sang-Yong
    Jung, Hyun-Kyo
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [48] Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework
    Maliki Moustapha
    Bruno Sudret
    Structural and Multidisciplinary Optimization, 2019, 60 : 2157 - 2176
  • [49] Multiple Surrogate-Assisted Many-Objective Optimization for Computationally Expensive Engineering Design
    Bhattacharjee, Kalyan Shankar
    Singh, Hemant Kumar
    Ray, Tapabrata
    JOURNAL OF MECHANICAL DESIGN, 2018, 140 (05)
  • [50] A dynamic adaptive hybrid surrogate-assisted particle swarm optimization algorithm for complex system design optimization
    You, Xiongxiong
    Zhang, Mengya
    Niu, Zhanwen
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2505 - 2531