Split crRNA-motivated amplification-free RNA testing with CRISPR–Cas12a

被引:0
|
作者
Jiayu Zeng
Pengfei Liu
Jinlian Du
Sheng Li
Erhu Xiong
Ronghua Yang
机构
[1] KeyLaboratoryofChemicalBiology&TraditionalChineseMedicineResearch,MinistryofEducation,CollegeofChemistryandChemicalEngineering,HunanNormalUniversity
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The CRISPR RNA(crRNA) consists of a conserved repeat RNA(rRNA) and an alterable spacer RNA(sRNA), which can guide the Cas12a effector to recognize and target DNA molecules of interest in both full-length and split fashion. We herein demonstrated the split crRNA can be repurposed for RNA detection through serving the sRNA as an RNA target. Inspired by this phenomenon, we developed a Cas12a-based direct RNA detection method, known as split crRNA-motivated amplification-free RNA testing(SMART). We adopted SMART to detect both short-stranded and long-stranded RNA target using two Cas12a orthologs(LbCas12a and FnCas12a), and it showed more prominent ability in detecting short-stranded RNA than long-stranded RNA. The potential mechanism revealed that RNA overhangs impede the RNA strand and dsDNA activator from accessing the catalytic site in the RuvC domain of the Cas12a effector, compromising the stability of the quaternary complex, and thus reducing the efficiency of SMART. Surprisingly, by simply introducing a short DNA activator, SMART could detect attomolar miRNA targets and femtomolar long-stranded RNA target without the need for additional preamplification or reverse transcription procedures. In addition, SMART showed wonderful discrimination ability toward single-nucleotide mutations.Moreover, the collaboration of SMART with the CRISPR–Cas13a system enabled simultaneous detection of multiplex RNAs.Overall, SMART is a simple, yet potent tool that can be flexibly applied to various short-stranded RNA detection, and holds great potential to be extended to other Cas12 orthologs.
引用
收藏
页码:789 / 801
页数:13
相关论文
共 50 条
  • [31] An amplification-free CRISPR/Cas12a-based fluorescence assay for ultrasensitive detection of nuclease activity
    Wang, Xinping
    Chen, Yichuan
    Ma, Lixin
    Han, Zhenwei
    Liu, Yi
    Qiao, Jie
    TALANTA, 2023, 257
  • [32] DNA Extraction- and Amplification-Free Nucleic Acid Biosensor for the Detection of Foodborne Pathogens Based on CRISPR/Cas12a and Argonaute Protein-Mediated Cascade Signal Amplification
    Chen, Rui
    Zhao, Junpeng
    Han, Minjie
    Dong, Yongzhen
    Jiang, Feng
    Chen, Yiping
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (46) : 18037 - 18045
  • [33] Enzyme Kinetics and Detector Sensitivity Determine Limits of Detection of Amplification-Free CRISPR-Cas12 and CRISPR-Cas13 Diagnostics
    Huyke, Diego A.
    Ramachandran, Ashwin
    Bashkirov, Vladimir, I
    Kotseroglou, Efthalia K.
    Kotseroglou, Theofilos
    Santiago, Juan G.
    ANALYTICAL CHEMISTRY, 2022, : 9826 - 9834
  • [34] One-Pot Molecular Diagnosis of Acute Hepatopancreatic Necrosis Disease by Recombinase Polymerase Amplification and CRISPR/ Cas12a with Specially Designed crRNA
    Wang, Pei
    Guo, Bo
    Zhang, Xue
    Wang, Yue
    Yang, Guang
    Shen, Hui
    Gao, Song
    Zhang, Lihui
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (16) : 6490 - 6498
  • [35] CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics
    Santiago-Frangos, Andrew
    Nemudryi, Artem
    Nemudraia, Anna
    Wiegand, Tanner
    Nichols, Joseph E.
    Krishna, Pushya
    Scherffius, Andrew M.
    Zahl, Trevor R.
    Wilkinson, Royce A.
    Wiedenheft, Blake
    METHODS, 2022, 205 : 1 - 10
  • [36] A CRISPR/Cas12a-SERS platform for amplification-free detection of African swine fever virus genes
    Wang, Huimin
    Su, Ailing
    Bao, Chengxin
    Liang, Chongyang
    Xu, Weiqing
    Chang, Jingjing
    Xu, Shuping
    TALANTA, 2024, 267
  • [37] Determinants of CRISPR Cas12a nuclease activation by DNA and RNA targets
    Nalefski, Eric A.
    Kooistra, Remy M.
    Parikh, Ishira
    Hedley, Samantha
    Rajaraman, Karunya
    Madan, Damian
    NUCLEIC ACIDS RESEARCH, 2024, 52 (08) : 4502 - 4522
  • [38] Nanozyme-assisted amplification-free CRISPR/Cas system realizes visual detection
    Zhang, Yuan
    Yu, Wanpeng
    Wang, Man
    Zhang, Lei
    Li, Peifeng
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 11
  • [39] Plasmonically Enhanced CRISPR/Cas13a-Based Bioassay for Amplification-Free Detection of Cancer-Associated RNA
    Liu, Lin
    Wang, Zheyu
    Wang, Yixuan
    Luan, Jingyi
    Morrissey, Jeremiah J.
    Naik, Rajesh R.
    Singamaneni, Srikanth
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (20)
  • [40] Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform
    Xujian Mao
    Jian Xu
    Jingyi Jiang
    Qiong Li
    Ping Yao
    Jinyi Jiang
    Li Gong
    Yin Dong
    Bowen Tu
    Rong Wang
    Hongbing Tang
    Fang Yao
    Fengming Wang
    Communications Biology, 7 (1)