Prediction of residual capacity of MH/Ni batteries based on neural network

被引:0
|
作者
Deng, Chao [1 ]
Shi, Peng-Fei [1 ]
机构
[1] Sch. of Sci., Harbin Inst. of Technol., Harbin 150001, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nickel cadmium batteries
引用
收藏
页码:1405 / 1408
相关论文
共 50 条
  • [31] Two-Dimensional Phase Unwrapping Based on Residual Prediction Neural Network
    Li, Han
    Zhong, Heping
    Zhang, Peng
    Ning, Mingqiang
    Tang, Jinsong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [32] Prediction of protein secondary structure based on deep residual convolutional neural network
    Cheng, Jinyong
    Xu, Ying
    Zhao, Yunxiang
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 1881 - 1890
  • [33] Capacity Prediction and Validation of Lithium-Ion Batteries Based on Long Short-Term Memory Recurrent Neural Network
    Chen, Zheng
    Xue, Qiao
    Wu, Yitao
    Shen, Shiquan
    Zhang, Yuanjian
    Shen, Jiangwei
    IEEE ACCESS, 2020, 8 (08) : 172783 - 172798
  • [34] High temperature charging efficiency and degradation behavior of high capacity Ni-MH batteries
    Choi, J
    Kim, IJ
    METALS AND MATERIALS-KOREA, 2001, 7 (01): : 77 - 81
  • [35] Influences of electrolyte on properties of MH/Ni batteries
    Dong, Qinghai
    Yan, Guangjiong
    Yu, Chengzhou
    Lai, Weihua
    Dianchi/Battery, 2000, 30 (02): : 77 - 79
  • [36] Effects of the technology factors of MH/Ni batteries
    Meng, Mianwu
    Huang, Siyu
    Liu, Mingdeng
    Deng, Ximing
    Dianchi/Battery Bimonthly, 1997, 27 (06): : 272 - 274
  • [37] Nanocrystalline materials for Ni-MH batteries
    Jurczyk, M
    Smardz, L
    Szajek, A
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 108 (1-2): : 67 - 75
  • [38] Characterisation of Spent Ni-MH Batteries
    Cabral, Marta
    Margarido, F.
    Nogueira, C. A.
    ADVANCED MATERIALS FORUM VI, PTS 1 AND 2, 2013, 730-732 : 569 - +
  • [39] Characterization of the performance of commercial Ni/MH batteries
    Nagarajan, GS
    Van Zee, JW
    JOURNAL OF POWER SOURCES, 1998, 70 (02) : 173 - 180
  • [40] Residual stress prediction using neural network approach
    Menda, František
    More, Marcel
    Cardona-Cuervo, G.P.
    Martinez-Tabares, F.J.
    Applied Mechanics and Materials, 2014, 611 : 436 - 440