Study on ductility of Ti aluminide using artificial neural network

被引:0
|
作者
Gupta R.K. [1 ]
Mehta R. [2 ]
Agarwala V. [3 ]
Pant B. [1 ]
Sinha P.P. [1 ]
机构
[1] Materials and Mechanical Entity, Vikram Sarabhai Space Center
[2] National Institute of Hydrology
[3] Departement of Metallurgical and Materials Engineering, Indian Institute of Technology
关键词
All Open Access; Gold; Green;
D O I
10.1155/2011/874375
中图分类号
学科分类号
摘要
Improvement of ductility at room temperature has been a major concern on processing and application of Ti aluminides over the years. Modifications in alloy chemistry of binary alloy (Ti48 Al) and processing conditions were suggested through experimental studies with limited success. Using the reported data, the present paper aims to optimize the experimental conditions through computational modeling using artificial neural network (ANN). Ductility database were prepared, and three parameters, namely, alloy type, grain size, and heat treatment cycle were selected for modeling. Additionally, ductility data were generated from the literature for training and validation of models on the basis of linearity and considering the primary effect of these three parameters. Model was trained and tested for three different datasets drawn from the generated data. Possibility of improving ductility by more than 5% is observed for multicomponent alloy with grain size of 10-50μm following a multistep heat treatment cycle. Copyright © 2011 R. K. Gupta et al.
引用
下载
收藏
相关论文
共 50 条
  • [21] Terrorism prediction using artificial neural network
    Soliman G.M.A.
    Abou-El-Enien T.H.M.
    Revue d'Intelligence Artificielle, 2019, 33 (02) : 81 - 87
  • [22] Image rectification using artificial neural network
    1600, Alexandria University, Alexandria, Egypt (43):
  • [23] Localization of Barcodes Using Artificial Neural Network
    Ventsov, N. N.
    Podkolzina, L. A.
    PROCEEDINGS OF 2018 IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS 2018), 2018,
  • [24] Voltage ranking using artificial neural network
    Lo, KL
    Luan, WP
    Given, M
    Macqueen, JF
    Ekwue, AO
    Chebbo, AM
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1999, 18 (04) : 587 - 599
  • [25] Rainfall estimation using an artificial neural network
    Hsu, K
    Sorooshian, S
    Gao, XG
    Gupta, HV
    FIRST CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1998, : 28 - 32
  • [26] Eggplant classification using artificial neural network
    Saito, Y
    Hatanaka, T
    Uosaki, K
    Shigeto, K
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1013 - 1018
  • [27] System Identification Using Artificial Neural Network
    Wilfred, K. J. Nidhil
    Sreeraj, S.
    Vijay, B.
    Bagyaveereswaran, V.
    2015 INTERNATIONAL CONFERENCED ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2015), 2015,
  • [28] Pain recognition using artificial neural network
    Monwar, Md. Maruf
    Rezaei, Siamak
    2006 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2006, : 28 - +
  • [29] Prediction of Diabetes by using Artificial Neural Network
    Sapon, Muhammad Akmal
    Ismail, Khadijah
    Zainudin, Suehazlyn
    CIRCUITS, SYSTEM AND SIMULATION, 2011, 7 : 299 - 303
  • [30] Traffic identification using artificial neural network
    Ali, AA
    Tervo, R
    CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING 2001, VOLS I AND II, CONFERENCE PROCEEDINGS, 2001, : 667 - 672