Thermodynamics-consistent graph neural networks

被引:0
|
作者
Rittig, Jan G. [1 ]
Mitsos, Alexander [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Proc Syst Engn AVTSVT, Forckenbeckstr 51, D-52074 Aachen, Germany
[2] JARA ENERGY, Templergraben 55, D-52056 Aachen, Germany
[3] Forschungszentrum Julich, Inst Climate & Energy Syst ICE 1 Energy Syst Engn, Wilhelm Johnen Str, D-52425 Julich, Germany
关键词
All Open Access; Gold; Green;
D O I
10.1039/d4sc04554h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures. The GE-GNN architecture ensures thermodynamic consistency by predicting the molar excess Gibbs free energy and using thermodynamic relations to obtain activity coefficients. As these are differential, automatic differentiation is applied to learn the activity coefficients in an end-to-end manner. Since the architecture is based on fundamental thermodynamics, we do not require additional loss terms to learn thermodynamic consistency. As the output is a fundamental property, we neither impose thermodynamic modeling limitations and assumptions. We demonstrate high accuracy and thermodynamic consistency of the activity coefficient predictions. We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures.
引用
收藏
页码:18504 / 18512
页数:9
相关论文
共 50 条
  • [21] Semisupervised Graph Neural Networks for Graph Classification
    Xie, Yu
    Liang, Yanfeng
    Gong, Maoguo
    Qin, A. K.
    Ong, Yew-Soon
    He, Tiantian
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (10) : 6222 - 6235
  • [22] Learning graph normalization for graph neural networks
    Chen, Yihao
    Tang, Xin
    Qi, Xianbiao
    Li, Chun-Guang
    Xiao, Rong
    NEUROCOMPUTING, 2022, 493 : 613 - 625
  • [23] Learning Graph Matching with Graph Neural Networks
    Dobler, Kalvin
    Riesen, Kaspar
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2024, 2024, 15154 : 3 - 12
  • [24] Factor Graph Neural Networks
    Zhang, Zhen
    Dupty, Mohammed Haroon
    Wu, Fan
    Shi, Javen Qinfeng
    Lee, Wee Sun
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [25] The Logic of Graph Neural Networks
    Grohe, Martin
    2021 36TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2021,
  • [26] Graph Kernel Neural Networks
    Cosmo, Luca
    Minello, Giorgia
    Bicciato, Alessandro
    Bronstein, Michael M.
    Rodola, Emanuele
    Rossi, Luca
    Torsello, Andrea
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [27] Benchmarking Graph Neural Networks
    Dwivedi, Vijay Prakash
    Joshi, Chaitanya K.
    Luu, Anh Tuan
    Laurent, Thomas
    Bengio, Yoshua
    Bresson, Xavier
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [28] Torsion Graph Neural Networks
    Shen, Cong
    Liu, Xiang
    Luo, Jiawei
    Xia, Kelin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 2946 - 2956
  • [29] Graph Pointer Neural Networks
    Yang, Tianmeng
    Wang, Yujing
    Yue, Zhihan
    Yang, Yaming
    Tong, Yunhai
    Bai, Jing
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8832 - 8839
  • [30] Elastic Graph Neural Networks
    Liu, Xiaorui
    Jin, Wei
    Ma, Yao
    Li, Yaxin
    Liu, Hua
    Wang, Yiqi
    Yan, Ming
    Tang, Jiliang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139