The determining number of Kneser graphs

被引:0
|
作者
机构
[1] Cáceres, José
[2] Garijo, Delia
[3] González, Antonio
[4] Márquez, Alberto
[5] Puertas, María Luz
来源
| 1600年 / Discrete Mathematics and Theoretical Computer Science卷 / 15期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A combinatorial proof for the circular chromatic number of Kneser graphs
    Liu, Daphne Der-Fen
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (03) : 765 - 774
  • [32] OPTIMAL REAL NUMBER GRAPH LABELLINGS OF A SUBFAMILY OF KNESER GRAPHS
    Erman, Rok
    Jurecic, Suzana
    Kral', Daniel
    Stopar, Kris
    Stopar, Nik
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1372 - 1381
  • [33] Graphs cospectral with Kneser graphs
    Haemers, Willem H.
    Ramezani, Farzaneh
    COMBINATORICS AND GRAPHS, 2010, 531 : 159 - +
  • [34] Hamiltonian Kneser graphs
    Chen, YC
    Füredi, Z
    COMBINATORICA, 2002, 22 (01) : 147 - 149
  • [35] The toughness of Kneser graphs
    Park, Davin
    Ostuni, Anthony
    Hayes, Nathan
    Banerjee, Amartya
    Wakhare, Tanay
    Wong, Wiseley
    Cioaba, Sebastian
    DISCRETE MATHEMATICS, 2021, 344 (09)
  • [36] On the determining number of some graphs
    Afkhami, Mojgan
    Amouzegar, Tayyebeh
    Khashyarmanesh, Kazem
    Korivand, Meysam
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (03) : 324 - 329
  • [37] On the diameter of Kneser graphs
    Valencia-Pabon, M
    Vera, JC
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 383 - 385
  • [38] Pebbling in Kneser Graphs
    Adauto, Matheus
    Bardenova, Viktoriya
    da Cruz, Mariana
    de Figueiredo, Celina
    Hurlbert, Glenn
    Sasaki, Diana
    LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 46 - 60
  • [39] Hamiltonian Kneser Graphs
    Ya-Chen Chen
    Z. Füredi
    Combinatorica, 2002, 22 : 147 - 149
  • [40] Path Decompositions of Kneser and Generalized Kneser Graphs
    Rodger, C. A.
    Whitt, Thomas Richard, III
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03): : 610 - 619