Unsupervised Multi-Scale Hybrid Feature Extraction Network for Semantic Segmentation of High-Resolution Remote Sensing Images

被引:2
|
作者
Song, Wanying [1 ]
Nie, Fangxin [1 ]
Wang, Chi [1 ]
Jiang, Yinyin [1 ]
Wu, Yan [2 ]
机构
[1] Xian Univ Sci & Technol, Sch Commun & Informat Engn, Xian Key Lab Network Convergence Commun, Xian 710054, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
基金
中国博士后科学基金;
关键词
high-resolution remote sensing; unsupervised; semantic segmentation; global context information; fine-grained features; feature fusion;
D O I
10.3390/rs16203774
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Generating pixel-level annotations for semantic segmentation tasks of high-resolution remote sensing images is both time-consuming and labor-intensive, which has led to increased interest in unsupervised methods. Therefore, in this paper, we propose an unsupervised multi-scale hybrid feature extraction network based on the CNN-Transformer architecture, referred to as MSHFE-Net. The MSHFE-Net consists of three main modules: a Multi-Scale Pixel-Guided CNN Encoder, a Multi-Scale Aggregation Transformer Encoder, and a Parallel Attention Fusion Module. The Multi-Scale Pixel-Guided CNN Encoder is designed for multi-scale, fine-grained feature extraction in unsupervised tasks, efficiently recovering local spatial information in images. Meanwhile, the Multi-Scale Aggregation Transformer Encoder introduces a multi-scale aggregation module, which further enhances the unsupervised acquisition of multi-scale contextual information, obtaining global features with stronger feature representation. The Parallel Attention Fusion Module employs an attention mechanism to fuse global and local features in both channel and spatial dimensions in parallel, enriching the semantic relations extracted during unsupervised training and improving the performance of unsupervised semantic segmentation. K-means clustering is then performed on the fused features to achieve high-precision unsupervised semantic segmentation. Experiments with MSHFE-Net on the Potsdam and Vaihingen datasets demonstrate its effectiveness in significantly improving the accuracy of unsupervised semantic segmentation.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    REMOTE SENSING, 2023, 15 (09)
  • [22] Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaolu
    Wang, Zhaoshun
    Wei, Anlei
    CANADIAN JOURNAL OF REMOTE SENSING, 2023, 49 (01)
  • [23] Multi-scale and multi-feature high resolution remote sensing image segmentation
    Zhao, Qiang
    Zhang, Sheng
    Huang, Shuling
    International Journal of Applied Mathematics and Statistics, 2013, 51 (22): : 343 - 350
  • [24] Water extraction from optical high-resolution remote sensing imagery: a multi-scale feature extraction network with contrastive learning
    Liu, Bo
    Du, Shihong
    Bai, Lubin
    Ouyang, Song
    Wang, Haoyu
    Zhang, Xiuyuan
    GISCIENCE & REMOTE SENSING, 2023, 60 (01)
  • [25] Multi-featured multi-scale combination of high-resolution remote sensing images for building extraction
    Niu, Yuhan
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2023, 9 (01)
  • [26] Multi-Scale and Multi-Network Deep Feature Fusion for Discriminative Scene Classification of High-Resolution Remote Sensing Images
    Yuan, Baohua
    Sehra, Sukhjit Singh
    Chiu, Bernard
    REMOTE SENSING, 2024, 16 (21)
  • [27] Semantic Segmentation of Remote Sensing Images Based on Dual Attention and Multi-scale Feature Fusion
    Weng, Mengqian
    Hu, Zhibo
    Xie, Xiaopeng
    Li, Yunhong
    Hu, Lei
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [28] MANet: a multi-level aggregation network for semantic segmentation of high-resolution remote sensing images
    Chen, Bingyu
    Xia, Min
    Qian, Ming
    Huang, Junqing
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) : 5874 - 5894
  • [29] Context-Driven Feature-Focusing Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Tan, Xiaowei
    Xiao, Zhifeng
    Zhang, Yanru
    Wang, Zhenjiang
    Qi, Xiaole
    Li, Deren
    REMOTE SENSING, 2023, 15 (05)
  • [30] Feature-Selection High-Resolution Network With Hypersphere Embedding for Semantic Segmentation of VHR Remote Sensing Images
    Xu, Hanwen
    Tang, Xinming
    Ai, Bo
    Yang, Fanlin
    Wen, Zhen
    Yang, Xiaomeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60