Optimization of the Electron Spectrometer Telescope geometry for the PRESET satellite through Monte Carlo simulation

被引:0
|
作者
Dyer, Benjamin [1 ]
Cheng, Xingzhi [1 ]
Hanu, Andrei R. [1 ,2 ]
Byun, Soo Hyun [1 ]
机构
[1] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4K1, Canada
[2] Bruce Power, Tiverton, ON N0G 2T0, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Electron telescope; Collimator; Silicon detector; Response matrix; GEANT4; RADIATION; FIELD;
D O I
10.1016/j.nima.2024.169954
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Electron Spectrometer Telescope (EST) aboard the PRESET satellite mission aims to measure the pitch angle distribution of 0.3-4 MeV electrons in the outer Van Allen belts. The PRESET satellite is planned to launch into a sun-synchronous low Earth orbit in Q2, 2026. We present comprehensive Monte Carlo simulations to optimize the design and response of the EST instrument. The EST consists of a stack of silicon strip detectors and a collimator to take pitch-angle dependent electron spectral measurements with a target angular resolution of 6 degrees degrees while rejecting the proton, heavy ion and gamma detection events. Various collimator designs and detector stacking configurations are investigated using the Geant4 code to deduce an optimal design and configuration. For validation of the Geant4 simulations, a benchmark test spectrometer was set up using a stack of four silicon detectors and a good agreement between the measured and simulated responses was found for a beta spectrum from a 90 Sr/ 90 Y source. The collimator design was optimized by adjusting total length, aperture size, number of view-ports and collimator materials. The optimum aperture size and the number of view- ports were determined by varying them and selecting the best cases that meet the angular resolution and the geometric factor requirements. Moreover, to address the under-utilization of the front position-sensitive detector encountered in a typical pin-hole collimator, two offset collimators with tilted axes were employed. Extensive simulations were carried out by varying the number of silicon detectors and the thickness of each detector to optimize the configuration of the silicon detector stack. An optimum thickness of the front detector was found to be 140 mu m, which can minimize the perturbation counts caused by the proton detection events. For the other detectors, a stack of four 1.5 mm thick detectors was chosen to achieve a good sensitivity to low energy electrons at a tolerable complexity of the system. The angular response simulated for the optimum design of the EST showed a resolution of 5.5 degrees, degrees , which is slightly better than the target resolution of 6 degrees. degrees . The response matrices of the final design simulated for isotropic electron and proton fields showed a high geometric factor, which is expected to produce an average electron counting rate of 230 cps within the trapped region with a negligible contamination of the electron spectrum by protons except for a mild contamination by the 1.0-1.1 MeV protons.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Monte Carlo simulation of ion transport through the RMS spectrometer of Laboratori Nazionali di Legnaro
    Marozin, A
    Soramel, F
    Muller, L
    Scarlassara, F
    Signorini, C
    Pisent, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1997, 126 (1-4): : 290 - 293
  • [22] Monte-Carlo simulation of a neutron Brillouin scattering spectrometer
    Jahn, S
    Suck, JB
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 438 (2-3): : 452 - 459
  • [23] Monte-Carlo simulation of a neutron Brillouin scattering spectrometer
    TU Chemnitz, Inst. Phys., Mat. Res. and Liquids, D-09107 Chemnitz, Germany
    Nucl Instrum Methods Phys Res Sect A, 2 (452-459):
  • [24] Study of an asymmetric compton suppression spectrometer by Monte Carlo simulation
    Kiang, L.L.
    Tsou, R.H.
    Li, J.H.
    Lin, S.C.
    Lo, C.-Y.
    Kiang, G.C.
    Teng, P.K.
    Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 355 (2-3):
  • [25] The FLUKA Monte Carlo simulation of the magnetic spectrometer of the FOOT experiment
    Dong, Y.
    Valle, S. M.
    Battistoni, G.
    Mattei, I.
    Finck, C.
    Patera, V.
    Alexandrov, A.
    Alpat, B.
    Ambrosi, G.
    Argiro, S.
    Barbanera, M.
    Bartosik, N.
    Bisogni, M. G.
    Boccia, V.
    Cavanna, F.
    Cerello, P.
    Ciarrocchi, E.
    De Gregorio, A.
    De Lellis, G.
    Di Crescenzo, A.
    Di Ruzza, B.
    Donetti, M.
    Durante, M.
    Faccini, R.
    Ferrero, V.
    Fiorina, E.
    Francesconi, M.
    Franchini, M.
    Franciosini, G.
    Galati, G.
    Galli, L.
    Ionica, M.
    Iuliano, A.
    Kanxheri, K.
    Kraan, A. C.
    La Tessa, C.
    Lauria, A.
    Torres, E. Lopez
    Magi, M.
    Manna, A.
    Marafini, M.
    Massa, M.
    Massimi, C.
    Mengarelli, A.
    Mereghetti, A.
    Minniti, T.
    Moggi, A.
    Montesi, M. C.
    Morone, M. C.
    Morrocchi, M.
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 307
  • [26] Monte Carlo simulations of the sensor head of imaging energetic electron spectrometer onboard a Chinese IGSO navigation satellite
    Zou, Hong
    Ye, YuGuang
    Zong, QiuGang
    Chen, HongFei
    Luo, Lin
    Zhou, XuZhi
    Chen, XingRan
    Hao, YiXin
    Ren, Jie
    Wang, YongFu
    Shi, WeiHong
    Yu, XiangQian
    Jia, XiangHong
    Xu, Feng
    Zhang, XiaoXin
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2019, 62 (07) : 1169 - 1181
  • [27] Monte Carlo simulations of the sensor head of imaging energetic electron spectrometer onboard a Chinese IGSO navigation satellite
    ZOU Hong
    YE YuGuang
    ZONG QiuGang
    CHEN HongFei
    LUO Lin
    ZHOU XuZhi
    CHEN XingRan
    HAO Yi Xin
    REN Jie
    WANG YongFu
    SHI WeiHong
    YU XiangQian
    JIA XiangHong
    XU Feng
    ZHANG XiaoXin
    Science China(Technological Sciences), 2019, 62 (07) : 1169 - 1181
  • [28] Monte Carlo simulations of the sensor head of imaging energetic electron spectrometer onboard a Chinese IGSO navigation satellite
    Hong Zou
    YuGuang Ye
    QiuGang Zong
    HongFei Chen
    Lin Luo
    XuZhi Zhou
    XingRan Chen
    YiXin Hao
    Jie Ren
    YongFu Wang
    WeiHong Shi
    XiangQian Yu
    XiangHong Jia
    Feng Xu
    XiaoXin Zhang
    Science China Technological Sciences, 2019, 62 : 1169 - 1181
  • [29] Monte Carlo simulations of the sensor head of imaging energetic electron spectrometer onboard a Chinese IGSO navigation satellite
    ZOU Hong
    YE YuGuang
    ZONG QiuGang
    CHEN HongFei
    LUO Lin
    ZHOU XuZhi
    CHEN XingRan
    HAO Yi Xin
    REN Jie
    WANG YongFu
    SHI WeiHong
    YU XiangQian
    JIA XiangHong
    XU Feng
    ZHANG XiaoXin
    Science China(Technological Sciences), 2019, (07) : 1169 - 1181
  • [30] A Monte Carlo based simulation tool to model the physics & geometry of Electron Beam Computed Tomography
    Cagnon, CH
    McNitt-Gray, MF
    DeMarco, JJ
    MEDICAL IMAGING 2001: PHYSICS OF MEDICAL IMAGING, 2001, 4320 : 636 - 644