Disjoint K1,4 in claw-free graphs with minimum degree at least four∗

被引:0
|
作者
机构
[1] Gao, Yunshu
[2] Zhou, Haijuan
来源
| 1600年 / Charles Babbage Research Centre卷 / 103期
关键词
921.4 Combinatorial Mathematics; Includes Graph Theory; Set Theory;
D O I
暂无
中图分类号
学科分类号
摘要
6
引用
收藏
相关论文
共 50 条
  • [31] Traceability in {K1,4, K1,4 + e}-free graphs
    Zheng, Wei
    Wang, Ligong
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (02) : 431 - 442
  • [32] Traceability in {K1,4, K1,4 + e}-free graphs
    Wei Zheng
    Ligong Wang
    Czechoslovak Mathematical Journal, 2019, 69 : 431 - 442
  • [33] Closure for {K1,4, K1,4 + e}-free graphs
    Ryjacek, Zdenek
    Vrana, Petr
    Wang, Shipeng
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 239 - 263
  • [34] Hamiltonicity of {K1,4,K1,4+e}-free graphs
    Li, R
    Schelp, RH
    DISCRETE MATHEMATICS, 2002, 245 (1-3) : 195 - 202
  • [35] Degree and neighborhood conditions for hamiltonicity of claw-free graphs
    Chen, Zhi-Hong
    DISCRETE MATHEMATICS, 2017, 340 (12) : 3104 - 3115
  • [36] Local Degree Conditions for Hamiltonicity of Claw-Free Graphs
    Shang, Wangyi
    Zhang, Shenggui
    Li, Binlong
    Liu, Xia
    GRAPHS AND COMBINATORICS, 2025, 41 (01)
  • [37] On weights of induced paths and cycles in claw-free and K1,r-free graphs
    Harant, J
    Voigt, M
    Jendrol', S
    Randerath, B
    Ryjácek, Z
    Schiermeyer, I
    JOURNAL OF GRAPH THEORY, 2001, 36 (03) : 131 - 143
  • [38] On sufficient degree conditions for traceability of claw-free graphs
    Tian, Tao
    Broersma, Hajo
    Xiong, Liming
    DISCRETE MATHEMATICS, 2020, 343 (07)
  • [39] Hamiltonian claw-free graphs involving minimum degrees
    Li, MingChu
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1530 - 1537
  • [40] Acyclic coloring of claw-free graphs with small degree
    Wang, Juan
    Liang, Zuosong
    Cai, Jiansheng
    Miao, Lianying
    DISCRETE APPLIED MATHEMATICS, 2022, 321 : 272 - 280