Graphene Oxide-Enhanced Nucleation and Growth of Calcium-Silicate-Hydrate Gel at Nanoscale: A Molecular Dynamics Study

被引:1
|
作者
Duan, Luyao [1 ]
Zhang, Junfei [1 ]
Ma, Guowei [1 ]
Pan, Zhu [1 ]
机构
[1] Hebei Univ Technol, Sch Civil & Transportat Engn, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金;
关键词
C-S-H; HARDENED CEMENT PASTE; REACTIVE FORCE-FIELD; MECHANICAL-PROPERTIES; PORE STRUCTURE; MICROSTRUCTURE; CONCRETE; PERMEABILITY; NANOSHEETS; STRENGTH;
D O I
10.1021/acs.langmuir.4c02686
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene oxide (GO) enhances the performance of cement-based materials by optimizing the microstructure of calcium-silicate-hydrate (C-S-H). However, the influence of GO on the nucleation and growth of C-S-H gel at nanoscale is unexplored. This study investigates this mechanism by molecular dynamics simulation at nano scale. Results show that GO can reduce the activation energy during the polymerization reaction of silicon oxide tetrahedra during the reaction process, and can increase the content of polymer Q3 and Q4. The influence of GO with epoxy (-O-), hydroxyl (-OH) and carboxyl (-COOH) groups on the radial distribution function (RDF), mean square displacement (MSD), and atomic spatial distribution of monomers are studied. Results show that GO-OH exhibits excellent performance, with the highest number of bridging oxygen atoms (about 0.6), the lowest Q0 monomer content (just 26.8%), the highest RDF (27.18), and the highest MSD (calcium and silicon content around 20,000 & Aring;2). This paper elucidates the nucleation and growth mechanism of C-S-H influenced by GO to develop high performance cement.
引用
收藏
页码:24330 / 24337
页数:8
相关论文
共 50 条
  • [41] Coarse-grained molecular dynamics study on submicron structuring of calcium silicate hydrate with enhanced tensile modulus and strength
    Yu, Zechuan
    Zhuo, Jingbo
    Qin, Renyuan
    Liu, Tiejun
    Zhou, Ao
    Tang, Jinhui
    JOURNAL OF BUILDING ENGINEERING, 2024, 82
  • [42] Morphology of calcium silicate hydrate (C-S-H) gel: a molecular dynamic study
    Hou, Dongshuai
    Ma, Hongyan
    Li, Zongjin
    ADVANCES IN CEMENT RESEARCH, 2015, 27 (03) : 135 - 146
  • [43] Water transport in calcium silicate hydrate nanoscale pores by molecular dynamics: Unsaturated steady-state diffusion and suction
    Liu, Zhiyong
    Jiang, Jinyang
    Xu, Dong
    Zhang, Shu
    Zhang, Yunsheng
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 356
  • [44] The mechanism of cesium ions immobilization in the nanometer channel of calcium silicate hydrate: a molecular dynamics study
    Jiang, Jinyang
    Wang, Pan
    Hou, Dongshuai
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (41) : 27974 - 27986
  • [45] Molecular dynamics study on the mode I fracture of calcium silicate hydrate under tensile loading
    Hou, Dongshuai
    Zhao, Tiejun
    Wang, Penggang
    Li, Zongjin
    Zhang, Jinrui
    ENGINEERING FRACTURE MECHANICS, 2014, 131 : 557 - 569
  • [46] Migration of nitrite corrosion inhibitor in calcium silicate hydrate nanopore: A molecular dynamics simulation study
    Hu, Xiaoxia
    Zheng, Heping
    Tao, Rui
    Wang, Pan
    FRONTIERS IN MATERIALS, 2022, 9
  • [47] Study on Molecular Dynamics Simulation of Calcium Silicate Hydrate (C-S-H) Gels
    Hui, Peng
    Dai, Wei
    INTELLIGENT COMPUTING AND INFORMATION SCIENCE, PT I, 2011, 134 (0I): : 142 - +
  • [48] Interactions of sodium chloride solution and calcium silicate hydrate with different calcium to silicon ratios: A molecular dynamics study
    Deng, Hongyang
    He, Zhen
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 268
  • [49] Structure, dynamics and transport behavior of migrating corrosion inhibitors on the surface of calcium silicate hydrate: a molecular dynamics study
    Sun, Ming
    Yang, Qingrui
    Zhang, Yue
    Wang, Pan
    Hou, Dongshuai
    Liu, Qingfeng
    Zhang, Jinrui
    Zhang, Jigang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (05) : 3267 - 3280
  • [50] Structure evolution of the interface between graphene oxide-reinforced calcium silicate hydrate gel particles exposed to high temperature
    Lu, Liqun
    Zhang, Yu
    Yin, Bing
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 173